We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Postoperative cognitive impairment is among the most common medical complications associated with surgical interventions – particularly in elderly patients. In our aging society, it is an urgent medical need to determine preoperative individual risk prediction to allow more accurate cost–benefit decisions prior to elective surgeries. So far, risk prediction is mainly based on clinical parameters. However, these parameters only give a rough estimate of the individual risk. At present, there are no molecular or neuroimaging biomarkers available to improve risk prediction and little is known about the etiology and pathophysiology of this clinical condition. In this short review, we summarize the current state of knowledge and briefly present the recently started BioCog project (Biomarker Development for Postoperative Cognitive Impairment in the Elderly), which is funded by the European Union. It is the goal of this research and development (R&D) project, which involves academic and industry partners throughout Europe, to deliver a multivariate algorithm based on clinical assessments as well as molecular and neuroimaging biomarkers to overcome the currently unsatisfying situation.
Previous studies have highlighted the role of the brain reward and cognitive control systems in the etiology of anorexia nervosa (AN). In an attempt to disentangle the relative contribution of these systems to the disorder, we used functional magnetic resonance imaging (fMRI) to investigate hemodynamic responses to reward-related stimuli presented both subliminally and supraliminally in acutely underweight AN patients and age-matched healthy controls (HC).
Methods
fMRI data were collected from a total of 35 AN patients and 35 HC, while they passively viewed subliminally and supraliminally presented streams of food, positive social, and neutral stimuli. Activation patterns of the group×stimulation condition×stimulus type interaction were interrogated to investigate potential group differences in processing different stimulus types under the two stimulation conditions. Moreover, changes in functional connectivity were investigated using generalized psychophysiological interaction analysis.
Results
AN patients showed a generally increased response to supraliminally presented stimuli in the inferior frontal junction (IFJ), but no alterations within the reward system. Increased activation during supraliminal stimulation with food stimuli was observed in the AN group in visual regions including superior occipital gyrus and the fusiform gyrus/parahippocampal gyrus. No group difference was found with respect to the subliminal stimulation condition and functional connectivity.
Conclusion
Increased IFJ activation in AN during supraliminal stimulation may indicate hyperactive cognitive control, which resonates with clinical presentation of excessive self-control in AN patients. Increased activation to food stimuli in visual regions may be interpreted in light of an attentional food bias in AN.
This note is presented as an idea to be criticised rather than as a description of a fully developed experimental technique. There are weaknesses in the method which will prevent it from giving absolutely correct answers, for example, the twist imparted to the boundary layer when a body of revolution is rolled cannot be represented. But some of the major effects can be represented, and the idea may possibly be developed to be of practical significance.
It is standard wind tunnel practice to measure the aerodynamic derivatives CYβ, C1β, Cnβ, CMβ, CLβ and CDβ by having a wind stream of constant direction, and measuring aerodynamic forces and moments on a model aircraft placed at angles of yaw and pitch to the stream.
Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6·76kms-1 and 9·60kms-1 corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1·6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation.
The synthesis telescopes at Fleurs and Molonglo have been used to map 50 supernova remnants. Additional specialized software to process the maps has been developed, and Parkes observations have been used to supply short spacing information missing from the maps.
At the centre of the Parkes 64—m radio telescope a region of diameter 17 m has recently been resurfaced to improve its efficiency at high frequencies. The first measurements using this section have been made at 22 GHz, in observations of both continuum sources and water tfapour masers. For these observations the receiver front-end used a mixer cooled in liquid nitrogen, followed by a 5 GHz cryogenic parametric amplifier as a second stage. The option of switching against an offset horn was available and the total systemnoise temperature was ∽ 750 K.
Several extragalactic HI surveys using a λ21 cm 13-beam focal plane array will begin in early 1997 using the Parkes 64 m telescope. These surveys are designed to detect efficiently nearby galaxies that have failed to be identified optically because of low optical surface brightness or high optical extinction. We discuss scientific and technical aspects of the multibeam receiver, including astronomical objectives, feed, receiver and correlator design and data acquisition. A comparison with other telescopes shows that the Parkes multibeam receiver has significant speed advantages for any large-area λ21 cm galaxy survey in the velocity range range 0–14000 km s−1.
We present preliminary results from a number of deep radio polarization surveys being made of the Magellanic Clouds at 2.3 GHz, 4.75 GHz and 8.55 GHz. Extended and linearly polarized radio emission has been found at 2.3 and 4.75 GHz from both the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). However, as the analysis of these data is not yet complete we present only some of the 4.75 GHz results at this time.
8.4 GHz linear polarization maps, obtained with the Parkes radio telescope, are presented for six southern supernova remnants. These results are compared with published and unpublished polarization maps at 5 GHz to derive the magnetic field direction and Faraday rotation measure distribution.
These results are part of a program to map the magnetic fields in galactic supernova remnants and complement our program to obtain high-resolution maps of galactic SNRs using the Molonglo Observatory Synthesis Telescope; five new Molonglo maps are presented here.
The Molonglo Observatory synthesis telescope (MOST) of the University of Sydney (Mills 1981) produces maps of the 843 MHz continuum emission from fields of width 23′, 46′ or 70′ arc. The telescope comprises two co-linear east-west cylindrical paraboloids each 2186λ in length and separated by a gap of 43λ. For each paraboloid a phasing network (Durdin et al. 1984) generates a comb of 64 contiguous fan beams. Mapping is accomplished in real time during a 12-h observation by overlaying, in the map plane, the instantaneous cross-correlations of corresponding beams. The synthesized point-source response (beam) produced by this method has a width of 43″ (E-W) by 43″ cosec δ (N-S).
PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed 2.5-m optical/infrared telescope to be located at Dome C on the Antarctic plateau. Conditions at Dome C are known to be exceptional for astronomy. The seeing (above ∼30 m height), coherence time, and isoplanatic angle are all twice as good as at typical mid-latitude sites, while the water-vapour column, and the atmosphere and telescope thermal emission are all an order of magnitude better. These conditions enable a unique scientific capability for PILOT, which is addressed in this series of papers. The current paper presents an overview of the optical and instrumentation suite for PILOT and its expected performance, a summary of the key science goals and observational approach for the facility, a discussion of the synergies between the science goals for PILOT and other telescopes, and a discussion of the future of Antarctic astronomy. Paper II and Paper III present details of the science projects divided, respectively, between the distant Universe (i.e. studies of first light, and the assembly and evolution of structure) and the nearby Universe (i.e. studies of Local Group galaxies, the Milky Way, and the Solar System).
The incidence of myocardial infarctions and influenza follow similar seasonal patterns. To determine if acute myocardial infarctions (AMIs) and ischaemic strokes are associated with influenza activity, we built time-series models using data from the Nationwide Inpatient Sample. In these models, we used influenza activity to predict the incidence of AMI and ischaemic stroke. We fitted national models as well as models based on four geographical regions and five age groups. Across all models, we found consistent significant associations between AMIs and influenza activity, but not between ischaemic strokes and influenza. Associations between influenza and AMI increased with age, were greatest in those aged >80 years, and were present in all geographical regions. In addition, the natural experiment provided by the second wave of the influenza pandemic in 2009 provided further evidence of the relationship between influenza and AMI, because both series peaked in the same non-winter month.
The review addresses how infection with Trypanosoma brucei affects the development, survival and functions of B lymphocytes in mice. It discusses (1) the contributions of antibodies to trypanosome clearance from the bloodstream, (2) how B lymphocytes, the precursors of antibody producing plasma cells, interact with membrane form variable surface glycoprotein (VSG), i.e. with monovalent antigen that is free to diffuse within the lipid bilayer of the trypanosome plasma membrane and consequently can cross-link B cell antigen specific receptors by indirect processes only and (3) the extent and underlying causes of dysregulation of humoral immune responses in infected mice, focusing on the impact of wild type and GPI-PLC−/− trypanosomes on bone marrow and extramedullary B lymphopoiesis, B cell maturation and survival.
Detailed screening of the patients and staff in a unit specializing in liver disease was carried out over a year to ascertain whether transmission of the serum hepatitis virus was occurring and whether the situation was comparable in any way to that found in a Renal Haemodialysis Unit. Of the 154 patients with liver disease tested on admission, 6% were found to have Australia antigen in the serum and throughout the year there were rarely less than two patients in the ward at any one time with positive serum. No instances of clinical hepatitis were detected in the other patients following their stay in the ward or in their attendant medical, nursing and lay staff. Six staff members were found to have Australia antigen in their serum. In four of these, all nurses, it was present in the first sample tested and so the infection may have been acquired earlier. Temporary elevations in both plasma bilirubin and serum aspartate aminotransferase levels were found in another five staff members whose serum was negative for Australia antigen and who clinically were well. In a further eight and apparently healthy staff members, an isolated but persistent elevation of the plasma bilirubin was noted. In both groups these changes could represent the spread of subclinical infectious hepatitis and it is recommended that in units dealing with ‘liver patients’ not only should considerable care be taken during diagnostic and therapeutic procedures but the medical and nursing staff should be screened at regular intervals.
Localized surface plasmon resonance (LSPR) excitation in silver and gold nanoparticles produces strong extinction and scattering spectra that in recent years have been used for important sensing and spectroscopy applications. This article describes the fabrication, characterization, and computational electrodynamics of plasmonic materials that take advantage of this concept.Two applications of these plasmonic materials are presented: (1) the development of an ultrasensitive nanoscale optical biosensor based on LSPR wavelength-shift spectroscopy and (2) the use of plasmon-sampled and wavelength-scanned surface-enhanced Raman excitation spectroscopy (SERES) to provide new insight into the electromagnetic-field enhancement mechanism.
It has been shown recently that Au labeling can be used to profile vacancy-type defects located near half the projected range (½Rp) in MeV-implanted Si. In this work we have quantified the technique by determining the ratio of vacancies annihilated to decrease in the number of Au atoms trapped (calibration factor ‘k’) for the Au labeling technique. The 3 step experiment involved: 1) a high-energy Si-self implant (HEI) followed by an anneal to form stable vacancy clusters, 2) a controlled removal of vacancies via a medium energy Si self implant and interstitial-cluster dissolution anneal, and finally 3) Au labeling to count the change in vacancy concentration in the near surface region (0.1-1.6μm). It is seen that the Au concentration decreases linearly with increasing interstitial injection and the slope of this decrease determined the number of vacancies per trapped Au atom. The value of k was determined to be 1.2±0.2 vacancies per trapped Au atom.
Ion-implantation and thermal-processing methods have been used to form nanophase magnetic precipitates of metallic cobalt that are embedded in the near-surface region of single crystals of Al2O3. The Co precipitates are isolated, single-crystal particles that are crystallographically oriented with respect to the host Al2O3 lattice. Embedded nanophase Co precipitates were formed by the implantation of Co+ at an energy of 140 keV and a dose of 8 × 1016 ions/cm2 followed by annealing in a reducing atmosphere. The implanted/annealed Co depth profile, particle size distributions and shapes, and the orientational relationship between the nanophase precipitates and the host crystal lattice were determined using RBS/channeling, transmission electron microscopy, and x-ray diffraction. Magneto-optical effects arising from Co precipitates formed in the near-surface region of Al2O3 were observed and characterized using magnetic circular dichroism. Magnetic properties of the Co-particle/host nanocomposites were investigated in the temperature range of 77 to 295 K in applied fields of up to 10 kG using a superconducting quantum interference device (SQUID) magnetometer. Implantation of the Co particles by Pt or Xe ions produced a large anisotropic increase in their coercivity. Accordingly, these magnetic nanoparticle systems may be of interest for magnetic data storage applications. Details of the magnetic properties of the Co/Al2O3 nanocomposites including their retentivity, coercivity, saturation field, and magnetic anisotropy are presented.
This article describes the anatomy of the visual pathways and how they should be assessed under anaesthesia. The differential diagnosis of asymmetrical pupils is illustrated with clinical examples and a strategy as to how they should be examined.
The diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si+, 1×1016/cm2, implant. A 4× larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10× smaller diffusion relative to markers without the MeV Si+ implant. This data demonstrates that a 2 MeV Si+ implant injects vacancies into the near surface region.