We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs), including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are widely found in plant oils and marine organisms. These fatty acids demonstrate significant biological effects, and their adequate intake is essential for maintaining health. However, modern diets often lack sufficient n-3 PUFAs, especially among populations that consume little fish or seafood,leading to a growing interest in n-3 PUFAs supplementation in nutrition and health research. In recent decades, the role of n-3 PUFAs in preventing and treating various diseases has gained increasing attention, particularly in cardiovascular, neurological, ophthalmic, allergic, hepatic, and oncological fields.In orthopedics, n-3 PUFAs exert beneficial effects through several mechanisms, including modulation of inflammatory responses, enhancement of cartilage repair, and regulation of bone metabolism. These effects demonstrate potential for the treatment of conditions such as osteoarthritis (OA), rheumatoid arthritis (RA), gout, osteoporosis (OP), fractures, sarcopenia, and spinal degenerative diseases (SDD). This review summarizes the clinical applications of n-3 PUFAs, with a focus on their research progress in the field of orthopedics, and explores their potential in the treatment of orthopedic diseases.
Persistent malnutrition is associated with poor clinical outcomes in cancer. However, assessing its reversibility can be challenging. The present study aimed to utilise machine learning (ML) to predict reversible malnutrition (RM) in patients with cancer. A multicentre cohort study including hospitalised oncology patients. Malnutrition was diagnosed using an international consensus. RM was defined as a positive diagnosis of malnutrition upon patient admission which turned negative one month later. Time-series data on body weight and skeletal muscle were modelled using a long short-term memory architecture to predict RM. The model was named as WAL-net, and its performance, explainability, clinical relevance and generalisability were evaluated. We investigated 4254 patients with cancer-associated malnutrition (discovery set = 2977, test set = 1277). There were 2783 men and 1471 women (median age = 61 years). RM was identified in 754 (17·7 %) patients. RM/non-RM groups showed distinct patterns of weight and muscle dynamics, and RM was negatively correlated to the progressive stages of cancer cachexia (r = –0·340, P < 0·001). WAL-net was the state-of-the-art model among all ML algorithms evaluated, demonstrating favourable performance to predict RM in the test set (AUC = 0·924, 95 % CI = 0·904, 0·944) and an external validation set (n 798, AUC = 0·909, 95 % CI = 0·876, 0·943). Model-predicted RM using baseline information was associated with lower future risks of underweight, sarcopenia, performance status decline and progression of malnutrition (all P < 0·05). This study presents an explainable deep learning model, the WAL-net, for early identification of RM in patients with cancer. These findings might help the management of cancer-associated malnutrition to optimise patient outcomes in multidisciplinary cancer care.
Overnutrition during before and pregnancy can cause maternal obesity and raise the risk of maternal metabolic diseases during pregnancy, and in offspring. Lentinus edodes may prevent or reduce obesity. This study aimed to to assess Lentinus edodes fermented products effects on insulin sensitivity, glucose and lipid metabolism in maternal and offspring, and explore its action mechanism. A model of overnutrition during pregnancy and lactation was developed using a 60 % kcal high-fat diet in C57BL6/J female mice. Fermented Lentinus edodes (FLE) was added to the diet at concentrations of 1 %, 3 %, and 5 %. The results demonstrated that FLE to the gestation diet significantly reduced serum insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) in pregnant mice. FLE can regulate maternal lipid metabolism and reduce fat deposition. Meanwhile, the hepatic phosphoinositide-3-kinase-protein kinase (PI3K/AKT) signaling pathway was significantly activated in the maternal mice. There is a significant negative correlation between maternal FLE supplementation doses and offspring body fat percentage and visceral fat content. Furthermore, FLE supplementation significantly increased offspring weaning litter weight, significantly reduced fasting glucose level, serum insulin level, HOMA-IR and serum glucose level, significantly activated liver PI3K/AKT signaling pathway in offspring, and upregulated the expression of liver lipolytic genes adipose triglyceride lipase, hormone-sensitive lipase and carnitine palmitoyltransferase 1 mRNA. Overall, FLE supplementation can regulate maternal lipid metabolism and reduce fat deposition during pregnancy and lactation, and it may improve insulin sensitivity in pregnant mothers and offspring at weaning through activation of the PI3K/AKT signaling pathway.
This study investigates the effects of fat emulsion-based early parenteral nutrition in patients following hemihepatectomy, addressing a critical gap in clinical knowledge regarding parenteral nutrition after hemihepatectomy. We retrospectively analysed clinical data from 274 patients who received non-fat emulsion-based parenteral nutrition (non-fatty nutrition group) and 297 patients who received fat emulsion-based parenteral nutrition (fatty nutrition group) after hemihepatectomy. Fat emulsion-based early parenteral nutrition significantly reduced levels of post-operative aspartate aminotransferase, total bilirubin and direct bilirubin, while minor decreases in red blood cell and platelet counts were observed in the fatty nutrition group. Importantly, fat emulsion-based early parenteral nutrition shortened lengths of post-operative hospital stay and fasting duration, but did not affect the incidence of short-term post-operative complications. Subgroup analyses revealed that the supplement of n-3 fish oil emulsions was significantly associated with a reduced inflammatory response and risk of post-operative infections. These findings indicate that fat emulsion-based early parenteral nutrition enhances short-term post-operative recovery in patients undergoing hemihepatectomy.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
The ubiquitous marine radiocarbon reservoir effect (MRE) constrains the construction of reliable chronologies for marine sediments and the further comparison of paleoclimate records. Different reference values were suggested from various archives. However, it remains unclear how climate and MREs interact. Here we studied two pre-bomb corals from the Hainan Island and Xisha Island in the northern South China Sea (SCS), to examine the relationship between MRE and regional climate change. We find that the MRE from east of Hainan Island is mainly modulated by the Southern Asian Summer Monsoon-induced precipitation (with 11.4% contributed to seawater), rather than wind induced upwelling. In contrast, in the relatively open seawater of Xisha Island, the MRE is dominated by the East Asian Winter Monsoon, with relatively more negative (lower) ΔR values associated with high wind speeds, implying horizontal transport of seawater. The average SCS ΔR value relative to the Marine20 curve is –161±39 14C years. Our finding highlights the essential role of monsoon in regulating the MRE in the northern SCS, in particularly the tight bond between east Asian winter monsoon and regional MRE.
Nonlinear compression experiments based on multiple solid thin plates are conducted in an ultra-high peak power Ti:sapphire laser system. The incident laser pulse, with an energy of 80 mJ and a pulse width of 30.2 fs, is compressed to 10.1 fs by a thin-plate based nonlinear compression. Significant small-scale self-focusing is observed as ring structures appear in the near-field of the output pulse at high energy. Numerical simulations based on the experimental setup provide a good explanation for the observed phenomena, offering quantitative predictions of the spectrum, pulse width, dispersion and near- and far-field distributions of the compressed laser pulse.
MicroRNAs (miRNAs) play important roles in regulating salt tolerance in Dongxiang wild rice (DXWR, Oryza rufipogon Griff.). The development of salt-responsive miRNA-simple sequence repeat (SSR) markers will significantly bolster research on DXWR, providing novel tools for exploring salt-tolerant genetic resources and advancing the development of salt-tolerant rice varieties. In the present study, a total of 137 miRNA-SSR markers were successfully developed, specifically derived from miRNAs responsive to salt stress in DXWR. Subsequently, a subset of 20 markers was randomly selected for validation across three distinct DXWR populations, along with 35 modern rice varieties. Notably, 13 of these markers exhibited remarkable polymorphism. The polymorphic markers collectively amplified 52 SSR loci, averaging four alleles per locus. The polymorphism information content values associated with these loci spanned from 0.23 to 0.70, with a mean value of 0.49. Particularly noteworthy is the miR162a-SSR marker, which demonstrated distinct allelic patterns and holds potential as a diagnostic marker for discriminating the salt-tolerant rice varieties from the non-tolerant varieties. This study provides a valuable tool for genetic analysis and precision breeding, facilitating the identification and utilization of valuable salt-tolerant genetic resources.
Immunity activation and inflammation are the main characteristics of rheumatoid arthritis and clonal hematopoiesis. However, it remains unclear whether rheumatoid arthritis increase the risk of clonal hematopoiesis. Here, a Mendelian randomization (MR) analysis was conduct to explore the causal effects of rheumatoid arthritis on clonal hematopoiesis. Summary statistics data of rheumatoid arthritis (13,838 cases and 33,742 controls) and clonal hematopoiesis (10,203 cases and 173,918 controls) derived from a genomewide association study were selected to analyze. We selected inverse-variance weighted, MR-Egger, weighted median, simple mode, and weighted mode to evaluate the causal effect of rheumatoid arthritis on clonal hematopoiesis. The two-sample MR analysis suggested a strong causal relationship between rheumatoid arthritis and clonal hematopoiesis by inverse-variance weighted (OR = 1.002311673, 95% CI [1.000110757, 1.004517433], p = .039706) and weighted median (OR = 1.002311673, 95% CI [1.000110757, 1.004517433], p = .039518447) methods. No significant pleiotropy or heterogeneity was found in the sensitivity analysis. These results supported a potentially causal relationship between rheumatoid arthritis and clonal hematopoiesis, and the exposure of rheumatoid arthritis increased the risks of clonal hematopoiesis. Our findings highlight the importance of how chronic inflammation and immune activation induced rheumatoid arthritis enhances the risks of clonal hematopoiesis, and that early intervention with rheumatoid arthritis patients might reduce the clonal hematopoiesis risks in rheumatoid arthritis patients. Moreover, our study provides clues for prediction of risk factors and potential mechanisms of clonal hematopoiesis.
Extreme events are ubiquitous in nature and social society, including natural disasters, accident disasters, crises in public health (such as Ebola and the COVID-19 pandemic), and social security incidents (wars, conflicts, and social unrest). These extreme events will heavily impact financial markets and lead to the appearance of extreme fluctuations in financial time series. Such extreme events lack statistics and are thus hard to predict. Recurrence interval analysis provides a feasible solution for risk assessment and forecasting. This Element aims to provide a systemic description of the techniques and research framework of recurrence interval analysis of financial time series. The authors also provide perspectives on future topics in this direction.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
Energy loss of protons with 90 and 100 keV energies penetrating through a hydrogen plasma target has been measured, where the electron density of the plasma is about 1016 cm−3 and the electron temperature is about 1-2 eV. It is found that the energy loss of protons in the plasma is obviously larger than that in cold gas and the experimental results based on the Bethe model calculations can be demonstrated by the variation of effective charge of protons in the hydrogen plasma. The effective charge remains 1 for 100 keV protons, while the value for 90 keV protons decreases to be about 0.92. Moreover, two empirical formulae are employed to extract the effective charge.
Recent reports of individuals experiencing suicidal and/or self-injurious behaviors while using liraglutide and semaglutide have heightened the concerns regarding neuropsychiatric safety of Glucagon-like peptide-1 agonists (GLP-1RAs). As real-world evidence is very limited, we explored the association between GLP-1RA and suicide/self-injury by mining the FDA Adverse Event Reporting System (FAERS) database.
Methods
The FAERS database was queried from 2005 Q2 to 2023 Q2. The Reporting Odds Ratio (ROR) and Empirical Bayes Geometric Mean (EBGM) were used to conduct the disproportionality analysis.
Results
A total of 534 GLP-1RA-associated suicide/self-injury cases were reported in the FAERS during the study period. GLP-1RA did not cause a disproportionate increase in overall suicidal and self-injurious cases (ROR: 0.16, 95%CI 0.15-0.18, P < 0.001; EBGM05: 0.15). Stratified analyses found no safety signal of suicide/injury for GLP-1RA in both females and males. The ROR for suicide/self-injury with GLP-1RA was slightly elevated (ROR: 2.50, 95%CI 1.02-6.13, P = 0.05) in children, while the EBGM05 was < 2 in this population. No significant signal value was observed in other age groups. No over-reporting of suicide/self-injury was identified for GLP-1RA before or after the COVID-19 pandemic outbreak.
Conclusions
The cases of suicide or self-injury reported to FAERS do not indicate any overall safety signal attributable to GLP-1RA at this time. Subgroup analysis revealed a marginal elevation of ROR for suicide and self-injury with GLP-1RA in children, but no safety signal was detected by EBGM05 in this population. Further large-scale prospective investigations are still warranted to further confirm this finding.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
Reward processing dysfunctions are considered a candidate mechanism underlying anhedonia and apathy in depression. Neuroimaging studies have documented that neurofunctional alterations in mesocorticolimbic circuits may neurally mediate these dysfunctions. However, common and distinct neurofunctional alterations during motivational and hedonic evaluation of monetary and natural rewards in depression have not been systematically examined. Here, we capitalized on pre-registered neuroimaging meta-analyses to (1) establish general reward-related neural alterations in depression, (2) determine common and distinct alterations during the receipt and anticipation of monetary v. natural rewards, and, (3) characterize the differences on the behavioral, network, and molecular level. The pre-registered meta-analysis (https://osf.io/ay3r9) included 633 depressed patients and 644 healthy controls and revealed generally decreased subgenual anterior cingulate cortex and striatal reactivity toward rewards in depression. Subsequent comparative analyses indicated that monetary rewards led to decreased hedonic reactivity in the right ventral caudate while natural rewards led to decreased reactivity in the bilateral putamen in depressed individuals. These regions exhibited distinguishable profiles on the behavioral, network, and molecular level. Further analyses demonstrated that the right thalamus and left putamen showed decreased activation during the anticipation of monetary reward. The present results indicate that distinguishable neurofunctional alterations may neurally mediate reward-processing alterations in depression, in particular, with respect to monetary and natural rewards. Given that natural rewards prevail in everyday life, our findings suggest that reward-type specific interventions are warranted and challenge the generalizability of experimental tasks employing monetary incentives to capture reward dysregulations in everyday life.
This study investigates the linear instability of a thin-film coating inside a rigid tube. The flow is assumed to be inertialess and driven by an axial body force (e.g. gravity), an interfacial shearing force, or their combinations. The interface and the bulk of the film are laden with soluble surfactant. The properties of the soluble surfactant, i.e. solubility, sorption kinetics and bulk diffusivity, modulate the interfacial dynamics of the film. The influence of these properties on the linear instability of the film is comprehensively investigated via long-wave approximation analysis and numerical calculation. Two modes, namely the interface mode and the surfactant mode, are identified to dominate the instability. For a quiescent film, it is found that solubility, sorption kinetics and bulk diffusivity act to improve the uniformity of the surface surfactant and mitigate the stabilizing effect of the Marangoni force. For the film driven by the axial body/interfacial shearing force, the results reveal that solubility plays contrasting roles in the interface mode and the surfactant mode. A window with intermediate solubility is detected where the film can be linearly stabilized. Moreover, sorption kinetics is found to destabilize the perturbations with long wavelength whereas it stabilizes the perturbations with finite wavelength. The bulk diffusivity of the surfactant has a non-monotonic influence on the flow instability, and the film can be relatively stable at both strong and weak diffusivity.
To develop a machine learning model and nomogram to predict the probability of persistent virus shedding (PVS) in hospitalized patients with coronavirus disease 2019 (COVID-19), the clinical symptoms and signs, laboratory parameters, cytokines, and immune cell data of 429 patients with nonsevere COVID-19 were retrospectively reviewed. Two models were developed using the Akaike information criterion (AIC). The performance of these two models was analyzed and compared by the receiver operating characteristic (ROC) curve, calibration curve, net reclassification index (NRI), and integrated discrimination improvement (IDI). The final model included the following independent predictors of PVS: sex, C-reactive protein (CRP) level, interleukin-6 (IL-6) level, the neutrophil-lymphocyte ratio (NLR), monocyte count (MC), albumin (ALB) level, and serum potassium level. The model performed well in both the internal validation (corrected C-statistic = 0.748, corrected Brier score = 0.201) and external validation datasets (corrected C-statistic = 0.793, corrected Brier score = 0.190). The internal calibration was very good (corrected slope = 0.910). The model developed in this study showed high discriminant performance in predicting PVS in nonsevere COVID-19 patients. Because of the availability and accessibility of the model, the nomogram designed in this study could provide a useful prognostic tool for clinicians and medical decision-makers.