We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Objectives/Goals: The timing of neurosurgery is highly variable for post-hemorrhagic hydrocephalus (PHH) of prematurity. We sought to utilize microvascular imaging (MVI) in ultrasound (US) to identify biomarkers to discern the opportune time for intervention and to analyze the cerebrospinal fluid (CSF) characteristics as they pertain to neurosurgical outcome. Methods/Study Population: The inclusion criteria for the study are admission to the neonatal intensive care unit (NICU) with a diagnosis of Papile grade III or IV. Exclusion criteria are congenital hydrocephalus and hydrocephalus secondary to myelomeningocele/brain tumor/vascular malformation. We are a level IV tertiary referral center. Our current clinical care pathway utilizes brain US at admission and at weekly intervals. Patients who meet certain clinical and radiographic parameters undergo temporary or permanent CSF diversion. Results/Anticipated Results: NEL was implemented at our institution for PHH of prematurity in fall 2022. To date, we have had 20 patients who were diagnosed with grade III or IV IVH, of which 12 qualified for NEL. Our preliminary safety and feasibility results as well as the innovative bedside technique pioneered at our institution are currently in revision stages for publication. Preliminary results of the MVI data have yielded that hyperemia may confer venous congestion in the germinal matrix, which should then alert the neurosurgeon to delay any intervention to avoid progression of intraventricular blood. With regard to CSF characteristics, we anticipate that protein, cell count, hemoglobin, iron, and ferritin will decrease with NEL. Discussion/Significance of Impact: The timing of PHH of prematurity is highly variable. We expect that MVI will offer radiographic biomarkers to guide optimal timing of neurosurgical intervention. A better understanding of CSF characteristics could potentially educate the neurosurgeon with regard to optimal timing of permanent CSF diversion based on specific CSF parameters.
Jellyfishes have ecological and societal value, but our understanding of taxonomic identity of many jellyfish species remains limited. Here, an approach integrating morphological and molecular (16S ribosomal RNA and cytochrome oxidase I) data enables taxonomic assessment of the blubber jellyfish found in the Philippines. In this study, we aimed to resolve doubt on the taxonomy of Acromitoides purpurus, a valid binomen at the time of our research. Our morphological findings confirm that this jellyfish belongs to the genus Catostylus, and is distinct from known species of the genus inhabiting the Western Pacific, such as Catostylus ouwensi, Catostylus townsendi, and Catostylus mosaicus. Detailed morphological and molecular analyses of the type specimens from the Philippines with the other Catostylus species revive the binomen Catostylus purpurus and invalidate A. purpurus. Genetic analysis also distinguishes this Philippine jellyfish from C. townsendi and C. mosaicus. Through this study, we arranged several Catostylidae taxa into species inquirendae (Catostylus tripterus, Catostylus turgescens, and Acromitoides stiphropterus) and one genus inquirenda (Acromitoides) and provided an identification key for species of Catostylus. This comprehensive study confirms the blubber jellyfish as C. purpurus, enriching our understanding of jellyfish biodiversity. The integration of morphological and genetic analyses proves vital in resolving taxonomic ambiguities within the Catostylidae family and in the accurate identification of scyphozoan jellyfishes.
Rapid Acceleration of Diagnostics (RADx®) Tech was the key diagnostics component of a three-pronged national strategy, including vaccines and therapeutics, to respond to the COVID-19 pandemic. Unprecedented in the scale of its mission, its budget, its accelerated time frame, the extent of cross-government agency collaboration and information exchange, and the blending of business, academic, and investment best practices, RAD Tech successfully launched dozens of US Food and Drug Administration Emergency Use Authorization diagnostic tests, established a new model for rapidly translating diagnostic tests from the laboratory to the marketplace, and accelerated public acceptance of home-based diagnostic tests. This chapter provides an overview of the processes utilized by RADx Tech during the COVID-19 pandemic to improve clinical laboratory tests and identify, evaluate, support, validate, and commercialize innovative point-of-care and home-based tests that directly detected the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus.