We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
One of the most prominent problems related to biological invasions is the variation of local species composition, which often leads to ex novo interspecific interactions. Here, we explored and analysed the native species composition of gall inducers and their associated parasitoids and inquilines in Spanish areas invaded by Dryocosmus kuriphilus Yasumatsu 1951 (Hymenoptera: Cynipidae), an invasive pest of chestnut trees. After a quantitative description of these species' assemblages, we analysed through bipartite networks the level of the trophic specialisation of parasitoids and inquilines when considering either the host taxonomic identity, the host plant species or the host gall morphological type. We sampled galls of D. kuriphilus and native species of Cynipidae in different Spanish areas, including those where the exotic parasitoid Torymus sinensis Kamijo 1982 (Hymenoptera: Torymidae) had been released for D. kuriphilus biological control. The results indicate that the native parasitoids recruited by D. kuriphilus come almost exclusively from native communities on Quercus galls, except for one species from Rosa. Galls of D. kuriphilus had the second most diverse species composition; despite this species assemblage arose ex novo in less than a decade. The bipartite networks resulted more specialised when considering host plant taxa than when gall types and the host taxa were accounted. In such trophic webs, there were few parasitoid/inquiline specialist and many generalist species, which agrees with the rapid recruitment by D. kuriphilus. Higher parasitoid species richness in D. kuriphilus galls is likely due to their being a largely unexploited available resource for the native natural enemies of cynipid wasps.
This study is based on our experience at public hospitals and private clinics of Toledo and Madrid, where we have addressed the treatment of children and adolescents presenting with Eating Disorders (EDs). Our intervention focuses on the application of brief psychotherapy, with particular emphasis on the effectiveness of Eye Movement Desesitization and Reprocessing (EMDR) in these cases.
Objectives
The primary objective of this study is to determine the benefits of applying EMDR in cases of pediatric and adolescent EDs in comparison to other psychotherapeutic techniques.
Methods
Over a period of one year, brief psychotherapy sessions were conducted with children and adolescents diagnosed with EDs. An integrative approach was used, combining family sistemic therapy, cognitive-behavioural therapy techniques, and brief psychodynamic approaches, along with EMDR sessions. Pre and post treatment assessments were conducted to measure changes in symptoms and patients’ quality life.
Results
The results obtained reveal significant improvements in patient symptomatology, including a notable reduction in food-anxiety, dietary restriction and compensatory behaviours. Furthermore, improvements were observed in body image perception and patiends’ overall quality of life. Incidence of relapse cases was minimal.
Conclusions
Our experience suggests that the application of a brief psychotherapy approach, combined with EMDR sessions, can be highly effective in treating children and adolescents with EDs. Early intervention and individualized adaptation of therapies are essential for achieving positive and lasting outcomes in this patient group. These findings underscore the importance of considering integrative approaches in the care of EDs in young population.
We present the spectral and spatial evolution of H2O masers associated with IRAS 18043–2116, a well-known water fountain hosting a high-velocity collimated jet, which has been found in the observations with the 45 m telescope of Nobeyama Radio Observatory and the Australia Telescope Compact Array. We found new highest velocity components of the H2O masers, with which the resulting velocity spread of ≃ 540 km s−1 breaks the speed record of fast jets/outflows in this type of sources.
Eight planetary nebulae (PNe) are known to emit OH and/or H2O masers, but there is no report of an SiO maser in this type of objects. We present a search for SiO masers in 16 confirmed and candidate PNe, carried out with the Australia Telescope Compact Array. We found no evidence of association between SiO masers and PNe in our data. Previous detections of thermal SiO emission in PNe show that these molecules can be present in gas phase in this type of objects, but it is not yet clear whether they can be found where the physical conditions are appropriate for maser pumping. We suggest that the best candidates for a new search would be PNe showing high-velocity outflows.
We have investigated the spectral evolutions of H2O and SiO masers associated with 12 “water fountain” sources in our FLASHING (Finest Legacy Acquisitions of SiO-/H2O-maser Ignitions by Nobeyama Generation) project. Our monitoring observations have been conducted using the Nobeyama 45 m telescope every 2 weeks–2 months since 2018 December except during summer seasons. We have found new extremely high velocity H2O maser components, breaking the records of jet speeds in this type of sources. Systematic line-of-sight velocity drifts of the H2O maser spectral peaks have also been found, indicating acceleration of the entrained material hosting the masers around the jet. Moreover, by comparing with previous spectral data, we can find decadal growths/decays of H2O maser emission. Possible periodic variations of the maser spectra are further being inspected in order to explore the periodicity of the central stellar system (a pulsating star or a binary). Thus we expect to see the real-time evolution/devolutions of the water fountains over decades.
We report new detections of SiO ν = 1 and ν = 2 J = 1 → 0 masers in the “water fountain” source IRAS 16552-3050, which was observed with the Nobeyama 45 m telescope from March 2021 to April 2023. Water fountains are evolved stars whose H2O maser spectra trace high-velocity outflows of >100 Km s−. This is the second known case of SiO masers in a water fountain, after their prototypical source, W 43A. The line-of-sight velocity of the SiO masers are blue-shifted by ∼25 km s−1 from the systemic velocity. This velocity offset imply that the SiO masers are associated with nozzle structure formed by a jet penetrating the circumstellar envelope, and that new gas blobs of the jet erupted recently. Thus, the SiO masers imply this star to be in a new evolutionary stage.
Planetary nebulae (PNe) harbouring masers of H2O (H2OPNe) and/or OH (OHPNe) are thought to be nascent PNe. They are extremely scarce, and so far only eight members are know to date. Here we explain our current effort to identify new H2OPNe and/or OHPNe. We report IRAS 07027–7934 as a new bona fine OHPN. Its 1612 MHz OH spectrum seems to be changing from double- to single-peaked since the redshifted emission has vanished almost completely, and the 1667 MHz OH maser emission has disappeared. For the OHPN Vy 2-2, we found that its central star is unexpectedly carbon (C)-rich, has a low-mass progenitor, and could be a post-common envelope binary system. Moreover, we confirm Vy 2-2 as a nascent PN. We speculate that low-mass C-rich central stars in post-common envelope systems could be a common end of H2OPNe and OHPNe.
The Guillain-Barré syndrome (GBS) has been previously associated with Zika virus infection. We analysed the data from all the patients with GBS diagnosis that were admitted to a referral hospital, in Tapachula City during the period from January 2013 to August 2016, comparing the incidence of GBS according to the temporality of the Zika outbreak in Southern Mexico. Additionally, we described the clinical and epidemiological characteristics of the GBS patients admitted before or after the Zika outbreak. We observed a sharp increase in the number of patients hospitalised due to GBS from the time the first confirmed Zika cases appeared in Mexico. Clinically we observed GBS cases before zika outbreak had more frequently history of respiratory/gastrointestinal symptoms and GBS during zika outbreak had significantly more frequently recent history of rash/conjunctivitis. Although we cannot affirm that the increased cases of GBS have a specific aetiologic association with Zika, our results suggest that this observed outbreak of in Tapachula, might have been associated to the emerging Zika epidemic, locally and suggests that rare complications associated with acute infections (such as GBS) might be useful in the surveillance systems for emerging infections.
Interactions between smooth muscle cells (SMCs) and biomaterials must not result in phenotype changes as this may generate uncontrolled multiplication processes and occlusions in vascular grafts. The aim of this study was to relate the hydrolytic stability and biocompatibility of polyurethanes (PUs) on SMCs. A higher polycaprolactone (PCL) concentration was found to improve the hydrolytic stability of the material and the adhesion of SMCs. A material with 5% polyethylene glycol, 90% PCL, and 5% pentaerythritol presented high cell viability and adhesion, suggesting a contractile phenotype in SMCs depending on the morphology. Nevertheless, all PUs retained their elastic modulus over 120 days, similar to the collagen of native arteries (~10 MPa). Furthermore, aortic SMCs did not present toxicity (viability over 80%) and demonstrated adherence without any abnormal cell multiplication processes, which is ideal for the function to be fulfiled in situ in the vascular grafts.
The alien cynipid wasp Dryocosmus kuriphilus Yasumatsu, 1951 is a serious pest of chestnuts (Castanea spp.) in Japan, North America and Europe, causing fruit losses while inducing galls in buds. While D. kuriphilus galls have a recognizable and roughly invariable globular shape, their size varies, reaching up to 4 cm in diameter. Among other factors, such variation may depend on different climatic conditions in different attacked areas. Here, we sampled and measured 375 D. kuriphilus galls from 25 localities throughout the Iberian Peninsula, including both cold and rainy northern (Eurosiberian) areas and warm and dry central-southern (Mediterranean) areas, to test the effects of climate and geographical location on gall morphology. The analyses indicate that gall mass and volume follow a pattern that can be associated with a climatic cline. In particular, the Eurosiberian galls were smaller than the Mediterranean galls according to differences in climatic conditions. In the southern areas, the greater insolation regime does not allow the chestnut trees to be distributed at lower altitudes, but the high rainfall and humidity regime of the mountain enclaves allow their presence. These conditions of insolation and precipitation seem to influence the morphological characteristics of the galls of D. kuriphilus.
Polyurethane/cellulose composites were synthesized from castor-oil-derived polyols and isophorone diisocyanate using dibutyltin dilaurate (DBTDL) as the catalyst. Materials were obtained by adding 2% cellulose in the form of either microcrystals (20 μm) or nanocrystals obtained by acid hydrolysis. The aim was to assess the effects of filler particle size and the use of a catalyst on the physicochemical properties and biological response of these composites. The addition of the catalyst was found to be essential to prevent filler aggregations and to enhance the tensile strength and elongation at break. The cellulose particle size influenced the composite properties, as its nanocrystals heighten hydrogen bond interactions between the filler surface and polyurethane domains, improving resistance to hydrolytic degradation. All hybrids retained cell viability, and the addition of DBTDL did not impair their biocompatibility. The samples were prone to calcification, which suggests that they could find application in the development of bioactive materials.
Polyurethane-based bioadhesive was synthesized with polyols derived from castor oil (chemically modified and unmodified) and hexamethylene diisocyanate with chitosan addition as a bioactive filler. The objective was to evaluate the effect of type of polyols with the incorporation of low-concentrations of chitosan on the mechanical and biological properties of the polymer to obtain suitable materials in the design of biomaterials. The results showed that increasing physical crosslinking increased the mechanical and adhesive properties. An in vitro cytotoxic test of polyurethanes showed cellular viability. The biocompatibility of the polyurethanes favors the adhesion of L929 cells at 6, 24, and 48 h. The polyurethanes showed bacterial inhibition depending on the polyol and percentage of chitosan. The antibacterial effect of the polyurethanes for Escherichia coli decreased 60–90% after 24 h. The mechanical and adhesive properties together with biological response in this research suggested these polyurethanes as external application tissue bioadhesives.
Only five planetary nebulae (PNe) have been confirmed to emit water masers. They seem to be very young PNe. The water emission in these objects preferentially traces circumstellar toroids, although in K 3-35 and IRAS 15103-5754, it may also trace collimated jets. We present water maser observations of these two sources at different epochs. The water maser distribution changes on timescales of months to a few years. We speculate that these changes may be due to the variation of the underlying radio continuum emission, which is amplified by the maser process in the foreground material.
We briefly introduce the VLBI maser astrometric analysis of IRAS 18043–2116 and IRAS 18113–2503, two remarkable and unusual water fountains with spectacular bipolar bow shocks in their high-speed collimated jet-driven outflows. The 22 GHz H2O maser structures and velocities clearly show that the jets are formed in very short-lived, episodic outbursts, which may indicate episodic accretion in an underlying binary system.
Despite ongoing efforts to motivate politicians and publics in Europe regarding nature conservation, biodiversity continues to decline. Monetary valuation of ecosystem services appears to be insufficient to motivate people, suggesting that non-monetary values have a crucial role to play. There is insufficient information about the motivations of actors who have been instrumental in successful conservation projects. We investigated the motivations underlying these biodiversity actors using the ranking of cards and compared the results with the rankings of motivations of a second group of actors with more socially related interests. For both groups of actors, their action relating to biodiversity was supported in general by two groups of motivations related to living a meaningful life and moral values. The non-biodiversity actors also noted that their action relating to biodiversity rested more on beauty, place attachment and intrinsic values in comparison with their main non-biodiversity interests. Our results have implications for environmental policy and biodiversity conservation in that the current tendency of focusing on the economic valuation of biodiversity fails to address the motivations of successful actors, thereby failing to motivate nature conservation on an individual level.
The phenotypic activity of two 5-nitroindazolinones, i.e. 2-benzyl-1-propyl (22) and 2-benzyl-1-butyl (24) derivatives, previously proposed as anti-Trypanosoma cruzi prototypes, was presently assayed on bloodstream trypomastigotes (BT) of the moderately drug-resistant Y strain. Further exploration of putative targets and cellular mechanisms involved in their activity was also carried out. Therefore, transmission electron microscopy, high-resolution respirometry and flow cytometry procedures were performed on BT treated for up to 24 h with the respective EC50 value of each derivative. Results demonstrated that although 22 and 24 were not as active as benznidazole in this in vitro assay on BT, both compounds triggered important damages in T. cruzi that lead to the parasite death. Ultrastructural alterations included shedding events, detachment of plasma membrane and nuclear envelope, loss of mitochondrial integrity, besides the occurrence of a large number of intracellular vesicles and profiles of endoplasmic reticulum surrounding cytoplasmic organelles such as mitochondrion. Moreover, both derivatives affected mitochondrion leading to this organelle dysfunction, as reflected by the inhibition in oxygen consumption and the loss of mitochondrial membrane potential. Altogether, the findings exposed in the present study propose autophagic processes and mitochondrial machinery as part of the mode of action of both 5-nitroindazolinones 22 and 24 on T. cruzi trypomastigotes.
A survey of the Milky Way disk and the Magellanic System at the wavelengths of the 21-cm atomic hydrogen (H i) line and three 18-cm lines of the OH molecule will be carried out with the Australian Square Kilometre Array Pathfinder telescope. The survey will study the distribution of H i emission and absorption with unprecedented angular and velocity resolution, as well as molecular line thermal emission, absorption, and maser lines. The area to be covered includes the Galactic plane (|b| < 10°) at all declinations south of δ = +40°, spanning longitudes 167° through 360°to 79° at b = 0°, plus the entire area of the Magellanic Stream and Clouds, a total of 13 020 deg2. The brightness temperature sensitivity will be very good, typically σT≃ 1 K at resolution 30 arcsec and 1 km s−1. The survey has a wide spectrum of scientific goals, from studies of galaxy evolution to star formation, with particular contributions to understanding stellar wind kinematics, the thermal phases of the interstellar medium, the interaction between gas in the disk and halo, and the dynamical and thermal states of gas at various positions along the Magellanic Stream.
We study the space of commuting elements in the central product Gm,p of m copies of the special unitary group SU(p), where p is a prime number. In particular, a computation for the number of path-connected components of these spaces is given and the geometry of the moduli space Rep(ℤn, Gm,p) of isomorphism classes of flat connections on principal Gm,p-bundles over the n-torus is completely described for all values of n, m and p.
It has been suggested that the presence of disks or tori around the central stars of pre Planetary Nebulae and Planetary Nebulae is related to the collimation of the jet that are frequently observed in these sources. These disks or tori can be traced by the maser emission of some molecules such as water. In this work we present Very Large Array (VLA) observations of the water maser emission at 22 GHz toward the PN IRAS 18061–2505, for which the masers appear located on one side of the central star. For comparison with the observations, we present a simple kinematical model of a disk rotating and expanding around the central star. The model matches qualitatively the observations. However, since the masers appear only on one side of the disk, these results are not conclusive.