We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the serendipitous radio-continuum discovery of a likely Galactic supernova remnant (SNR) G305.4–2.2. This object displays a remarkable circular symmetry in shape, making it one of the most circular Galactic SNRs known. Nicknamed Teleios due to its symmetry, it was detected in the new Australian Square Kilometre Array Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) radio–continuum images with an angular size of 1 320$^{\prime\prime}$$\times$1 260$^{\prime\prime}$ and PA = 0$^\circ$. While there is a hint of possible H$\alpha$ and gamma-ray emission, Teleios is exclusively seen at radio–continuum frequencies. Interestingly, Teleios is not only almost perfectly symmetric, but it also has one of the lowest surface brightnesses discovered among Galactic SNRs and a steep spectral index of $\alpha$=–0.6$\pm$0.3. Our best estimates from Hi studies and the $\Sigma$–D relation place Teleios as a type Ia SNR at a distance of either $\sim$2.2 kpc (near-side) or $\sim$7.7 kpc (far-side). This indicates two possible scenarios, either a young (under 1 000 yr) or a somewhat older SNR (over 10 000 yr). With a corresponding diameter of 14/48 pc, our evolutionary studies place Teleios at the either early or late Sedov phase, depending on the distance/diameter estimate. However, our modelling also predicts X-ray emission, which we do not see in the present generation of eROSITA images. We also explored a type Iax explosion scenario that would point to a much closer distance of $\lt$1 kpc and Teleios size of only $\sim$3.3 pc, which would be similar to the only known type Iax remnant SN1181. Unfortunately, all examined scenarios have their challenges, and no definitive Supernova (SN) origin type can be established at this stage. Remarkably, Teleios has retained its symmetrical shape as it aged even to such a diameter, suggesting expansion into a rarefied and isotropic ambient medium. The low radio surface brightness and the lack of pronounced polarisation can be explained by a high level of ambient rotation measure (RM), with the largest RM being observed at Teleios’s centre.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
We provide an assessment of the Infinity Two fusion pilot plant (FPP) baseline plasma physics design. Infinity Two is a four-field period, aspect ratio $A = 10$, quasi-isodynamic stellarator with improved confinement appealing to a max-$J$ approach, elevated plasma density and high magnetic fields ($ \langle B\rangle = 9$ T). Here $J$ denotes the second adiabatic invariant. At the envisioned operating point ($800$ MW deuterium-tritium (DT) fusion), the configuration has robust magnetic surfaces based on magnetohydrodynamic (MHD) equilibrium calculations and is stable to both local and global MHD instabilities. The configuration has excellent confinement properties with small neoclassical transport and low bootstrap current ($|I_{bootstrap}| \sim 2$ kA). Calculations of collisional alpha-particle confinement in a DT FPP scenario show small energy losses to the first wall (${\lt}1.5 \,\%$) and stable energetic particle/Alfvén eigenmodes at high ion density. Low turbulent transport is produced using a combination of density profile control consistent with pellet fueling and reduced stiffness to turbulent transport via three-dimensional shaping. Transport simulations with the T3D-GX-SFINCS code suite with self-consistent turbulent and neoclassical transport predict that the DT fusion power$P_{{fus}}=800$ MW operating point is attainable with high fusion gain ($Q=40$) at volume-averaged electron densities $n_e\approx 2 \times 10^{20}$ m$^{-3}$, below the Sudo density limit. Additional transport calculations show that an ignited ($Q=\infty$) solution is available at slightly higher density ($2.2 \times 10^{20}$ m$^{-3}$) with $P_{{fus}}=1.5$ GW. The magnetic configuration is defined by a magnetic coil set with sufficient room for an island divertor, shielding and blanket solutions with tritium breeding ratios (TBR) above unity. An optimistic estimate for the gas-cooled solid breeder designed helium-cooled pebble bed is TBR $\sim 1.3$. Infinity Two satisfies the physics requirements of a stellarator fusion pilot plant.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
Syncope is common among pediatric patients and is rarely pathologic. The mechanisms for symptoms during exercise are less well understood than the resting mechanisms. Additionally, inert gas rebreathing analysis, a non-invasive examination of haemodynamics including cardiac output, has not previously been studied in youth with neurocardiogenic syncope.
Methods:
This was a retrospective (2017–2023), single-center cohort study in pediatric patients ≤ 21 years with prior peri-exertional syncope evaluated with echocardiography and cardiopulmonary exercise testing with inert gas rebreathing analysis performed on the same day. Patients with and without symptoms during or immediately following exercise were noted.
Results:
Of the 101 patients (15.2 ± 2.3 years; 31% male), there were 22 patients with symptoms during exercise testing or recovery. Resting echocardiography stroke volume correlated with resting (r = 0.53, p < 0.0001) and peak stroke volume (r = 0.32, p = 0.009) by inert gas rebreathing and with peak oxygen pulse (r = 0.61, p < 0.0001). Patients with syncopal symptoms peri-exercise had lower left ventricular end-diastolic volume (Z-score –1.2 ± 1.3 vs. –0.36 ± 1.3, p = 0.01) and end-systolic volume (Z-score –1.0 ± 1.4 vs. −0.1 ± 1.1, p = 0.001) by echocardiography, lower percent predicted peak oxygen pulse during exercise (95.5 ± 14.0 vs. 104.6 ± 18.5%, p = 0.04), and slower post-exercise heart rate recovery (31.0 ± 12.7 vs. 37.8 ± 13.2 bpm, p = 0.03).
Discussion:
Among youth with a history of peri-exertional syncope, those who become syncopal with exercise testing have lower left ventricular volumes at rest, decreased peak oxygen pulse, and slower heart rate recovery after exercise than those who remain asymptomatic. Peak oxygen pulse and resting stroke volume on inert gas rebreathing are associated with stroke volume on echocardiogram.
The association between cannabis and psychosis is established, but the role of underlying genetics is unclear. We used data from the EU-GEI case-control study and UK Biobank to examine the independent and combined effect of heavy cannabis use and schizophrenia polygenic risk score (PRS) on risk for psychosis.
Methods
Genome-wide association study summary statistics from the Psychiatric Genomics Consortium and the Genomic Psychiatry Cohort were used to calculate schizophrenia and cannabis use disorder (CUD) PRS for 1098 participants from the EU-GEI study and 143600 from the UK Biobank. Both datasets had information on cannabis use.
Results
In both samples, schizophrenia PRS and cannabis use independently increased risk of psychosis. Schizophrenia PRS was not associated with patterns of cannabis use in the EU-GEI cases or controls or UK Biobank cases. It was associated with lifetime and daily cannabis use among UK Biobank participants without psychosis, but the effect was substantially reduced when CUD PRS was included in the model. In the EU-GEI sample, regular users of high-potency cannabis had the highest odds of being a case independently of schizophrenia PRS (OR daily use high-potency cannabis adjusted for PRS = 5.09, 95% CI 3.08–8.43, p = 3.21 × 10−10). We found no evidence of interaction between schizophrenia PRS and patterns of cannabis use.
Conclusions
Regular use of high-potency cannabis remains a strong predictor of psychotic disorder independently of schizophrenia PRS, which does not seem to be associated with heavy cannabis use. These are important findings at a time of increasing use and potency of cannabis worldwide.
Product architecture decisions are made early in the product development process and have far-reaching effects. Unless anticipated through experience or intuition, many of these effects may not be apparent until much later in the development process, making changes to the architecture costly in time, effort and resources. Many researchers through the years have studied various elements of product architecture and their effects. By using a repeatable process for aggregating statements on the effects of architecture strategies from a selection of the literature on the topic and storing them in a systematic database, this information can then be recalled and presented in the form of a Product Architecture Strategy and Effect (PASE) matrix. PASE matrices allow for the identification, comparison, evaluation, and then selection of the most desirable product architecture strategies before expending resources along a specific development path. This paper introduces the PASE Database and matrix and describes their construction and use in guiding design decisions. This paper also provides metrics for understanding the robustness of this database.
Cannabis use and familial vulnerability to psychosis have been associated with social cognition deficits. This study examined the potential relationship between cannabis use and cognitive biases underlying social cognition and functioning in patients with first episode psychosis (FEP), their siblings, and controls.
Methods
We analyzed a sample of 543 participants with FEP, 203 siblings, and 1168 controls from the EU-GEI study using a correlational design. We used logistic regression analyses to examine the influence of clinical group, lifetime cannabis use frequency, and potency of cannabis use on cognitive biases, accounting for demographic and cognitive variables.
Results
FEP patients showed increased odds of facial recognition processing (FRP) deficits (OR = 1.642, CI 1.123–2.402) relative to controls but not of speech illusions (SI) or jumping to conclusions (JTC) bias, with no statistically significant differences relative to siblings. Daily and occasional lifetime cannabis use were associated with decreased odds of SI (OR = 0.605, CI 0.368–0.997 and OR = 0.646, CI 0.457–0.913 respectively) and JTC bias (OR = 0.625, CI 0.422–0.925 and OR = 0.602, CI 0.460–0.787 respectively) compared with lifetime abstinence, but not with FRP deficits, in the whole sample. Within the cannabis user group, low-potency cannabis use was associated with increased odds of SI (OR = 1.829, CI 1.297–2.578, FRP deficits (OR = 1.393, CI 1.031–1.882, and JTC (OR = 1.661, CI 1.271–2.171) relative to high-potency cannabis use, with comparable effects in the three clinical groups.
Conclusions
Our findings suggest increased odds of cognitive biases in FEP patients who have never used cannabis and in low-potency users. Future studies should elucidate this association and its potential implications.
According to International Union for the Conservation of Nature (IUCN) guidelines, all species must be assessed against all criteria during the Red Listing process. For organismal groups that are diverse and understudied, assessors face considerable challenges in assembling evidence due to difficulty in applying definitions of key terms used in the guidelines. Challenges also arise because of uncertainty in population sizes (Criteria A, C, D) and distributions (Criteria A2/3/4c, B). Lichens, which are often small, difficult to identify, or overlooked during biodiversity inventories, are one such group for which specific difficulties arise in applying Red List criteria. Here, we offer approaches and examples that address challenges in completing Red List assessments for lichens in a rapidly changing arena of data availability and analysis strategies. While assessors still contend with far from perfect information about individual species, we propose practical solutions for completing robust assessments given the currently available knowledge of individual lichen life-histories.
From early on, infants show a preference for infant-directed speech (IDS) over adult-directed speech (ADS), and exposure to IDS has been correlated with language outcome measures such as vocabulary. The present multi-laboratory study explores this issue by investigating whether there is a link between early preference for IDS and later vocabulary size. Infants’ preference for IDS was tested as part of the ManyBabies 1 project, and follow-up CDI data were collected from a subsample of this dataset at 18 and 24 months. A total of 341 (18 months) and 327 (24 months) infants were tested across 21 laboratories. In neither preregistered analyses with North American and UK English, nor exploratory analyses with a larger sample did we find evidence for a relation between IDS preference and later vocabulary. We discuss implications of this finding in light of recent work suggesting that IDS preference measured in the laboratory has low test-retest reliability.
We examined whether cannabis use contributes to the increased risk of psychotic disorder for non-western minorities in Europe.
Methods
We used data from the EU-GEI study (collected at sites in Spain, Italy, France, the United Kingdom, and the Netherlands) on 825 first-episode patients and 1026 controls. We estimated the odds ratio (OR) of psychotic disorder for several groups of migrants compared with the local reference population, without and with adjustment for measures of cannabis use.
Results
The OR of psychotic disorder for non-western minorities, adjusted for age, sex, and recruitment area, was 1.80 (95% CI 1.39–2.33). Further adjustment of this OR for frequency of cannabis use had a minimal effect: OR = 1.81 (95% CI 1.38–2.37). The same applied to adjustment for frequency of use of high-potency cannabis. Likewise, adjustments of ORs for most sub-groups of non-western countries had a minimal effect. There were two exceptions. For the Black Caribbean group in London, after adjustment for frequency of use of high-potency cannabis the OR decreased from 2.45 (95% CI 1.25–4.79) to 1.61 (95% CI 0.74–3.51). Similarly, the OR for Surinamese and Dutch Antillean individuals in Amsterdam decreased after adjustment for daily use: from 2.57 (95% CI 1.07–6.15) to 1.67 (95% CI 0.62–4.53).
Conclusions
The contribution of cannabis use to the excess risk of psychotic disorder for non-western minorities was small. However, some evidence of an effect was found for people of Black Caribbean heritage in London and for those of Surinamese and Dutch Antillean heritage in Amsterdam.
Over the years, so-called univentricular hearts represented one of the greatest challenges for surgical correction. All this changed with the advent of the Fontan procedure,1 along with the realization that it could become the final stage of the sequence of procedures used to correct lesions such as those included in the hypoplastic left heart syndrome,2 which previously had been beyond surgical repair. The overall group of lesions also posed significant problems in adequate description and categorization. Even these days, many continue to describe patients with a double inlet left ventricle as having a single ventricle, despite the fact that, with the availability of clinical diagnostic techniques producing three-dimensional datasets, patients with this lesion can be seen to have two chambers within their ventricular mass, one being large and the other small (Figure 9.1.1). The semantic problems with description can now be resolved by the simple expedient of describing the patients as having functionally univentricular hearts.3
Understanding the anatomy of septal defects is greatly facilitated if the heart is thought of as having three distinct septal structures: the atrial septum, the atrioventricular septum, and the ventricular septum (Figure 8.1.1). The normal atrial septum is relatively small. It is made up, for the most part, by the floor of the oval fossa. When viewed from the right atrial aspect, the fossa has a floor, surrounded by rims. As we have shown in Chapter 2, the floor is derived from the primary atrial septum, or septum primum. Although often considered to represent a secondary septum, or septum secundum, the larger parts of the rims, specifically the superior, antero-superior, and posterior components, are formed by infoldings of the adjacent right and left atrial walls.1 Infero-anteriorly, in contrast, the rim of the fossa is a true muscular septum (Figure 8.1.2).
It is axiomatic that a thorough knowledge of valvar anatomy is a prerequisite for successful surgery, be it valvar replacement or reconstruction. The surgeon will also require a firm understanding of the arrangement of other aspects of cardiac anatomy to ensure safe access to a diseased valve or valves. These features were described in the previous chapter. Knowledge of the surgical anatomy of the valves themselves, however, must be founded on appreciation of their component parts, the relationships of the individual valves to each other, and their relationships to the chambers and arterial trunks within which they reside. This requires understanding of, first, the basic orientation of the cardiac valves, emphasizing the intrinsic features that make each valve distinct from the others. Such information must then be supplemented by attention to their relationships with other structures that the surgeon must avoid, notably the conduction tissues and the major channels of the coronary circulation.
The surgical problems posed by cardiac malformations may be considerably increased when the heart itself is in an abnormal position. This is, in part, due to the unusual anatomical perspective presented to the surgeon because of the malposition, and also to the abnormal locations of the cardiac chambers, which may necessitate approaches other than those already discussed. Cardiac malposition in itself, nonetheless, does not constitute a diagnosis. Any normal or abnormal segmental combination can be found in a heart which itself is abnormally located. The heart may be normal, despite its abnormal location, but extremely complex anomalies are frequently present. Consequently, the very presence of an abnormal cardiac position emphasizes the need for a full and detailed segmental analysis of the heart. All the rules enunciated in Chapter 7 apply should the heart not be in its anticipated position.
Systems for describing congenital cardiac malformations have frequently been based on embryological concepts and theories. As useful as these systems have been, they have often had the effect of confusing the clinician, rather than clarifying the basic anatomy of a given lesion. As far as the surgeon is concerned, the essence of a particular malformation lies not in its presumed morphogenesis, but in the underlying anatomy. An effective system for describing this anatomy must be based on the morphology as it is observed. At the same time, it must be capable of accounting for all congenital cardiac conditions, even those that, as yet, might not have been encountered. To be useful clinically, the system must be not only broad and accurate, but also clear and consistent. The terminology used, therefore, should be unambiguous. It should be as simple as possible. The sequential segmental approach provides such a system.1
The coronary circulation consists of the coronary arteries and veins, together with the lymphatics of the heart. Since the lymphatics, apart from the thoracic duct, are of very limited significance to operative anatomy, they will not be discussed at any length in this chapter. The veins, relatively speaking, are similarly of less interest. In this chapter, therefore, we concentrate on those anatomical aspects of arterial distribution that are pertinent to the surgeon, limiting ourselves to brief discussions of the cardiac venous drainage and the cardiac lymphatics.