We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aiming at the problem of fast and consensus obstacle avoidance of multiple unmanned aerial systems in undirected network, a multi-quadrotor unmanned aerial vehicles UAVs (QUAVs) finite-time consensus obstacle avoidance algorithm is proposed. In this paper, multi-QUAVs establish communication through the leader-following method, and the formation is led by the leader to fly to the target position automatically and avoid obstacles autonomously through the improved artificial potential field method. The finite-time consensus protocol controls multi-QUAVs to form a desired formation quickly, considering the existence of communication and input delay, and rigorously proves the convergence of the proposed protocol. A trajectory segmentation strategy is added to the improved artificial potential field method to reduce trajectory loss and improve the task execution efficiency. The simulation results show that multi-QUAVs can be assembled to form the desired formation quickly, and the QUAV formation can avoid obstacles and maintain the formation unchanged while avoiding obstacles.
A large body of research demonstrates positive impacts of the Coping Power Program as a preventive intervention for youth behavioral outcomes, but potential collateral effects for caregivers is less known. The current study examined whether the youth-focused Coping Power Program can have a secondary impact on caregiver self-reported symptoms of depression and in turn result in longer-term impacts on child disruptive behavior problems including aggression, conduct problems and hyperactivity. Data from 360 youth/caregiver pairs across 8 waves of data (grades 4 through 10) were analyzed. We used two methodological approaches to (a) assess indirect effects in the presence of potential bidirectionality using timepoint-to-timepoint dynamic effects under Autoregressive Latent Trajectory modeling and (b) estimate scale scores in the presence of measurement non-invariance. Results showed that individually delivered Coping Power (ICP) produced greater direct effects on conduct problems and indirect effects on general externalizing and hyperactivity (through reductions in caregiver self-reported symptoms of depression), compared to group Coping Power (GCP). In comparison to GCP, ICP produced similar direct effects on reductions in caregiver depression. Child-focused prevention interventions can have an indirect impact on caregiver depression, which later shows improvements in longer-term reductions for child disruptive problems.
With the topic of sustainability steadily gaining importance and public awareness, there is growing consensus about the need to incorporate environmental considerations in early stage product development (PD). This makes it imperative for PD practitioners to have access to methods and tools, including life cycle assessment (LCA), that support sustainability integration. This paper evaluates existing LCA tools on their ability to cater to the early-stage PD context, by having users apply the tools in practice and exploring their experiences. We find that the challenges to applying LCA in this context emanate primarily from the shortcomings of the tools themselves. Our evaluation metrics for tool critique are derived from a thematic analysis of user interviews we conducted, refined according to information and interaction design principles from human-computer interaction (HCI). This unique approach helps triangulate insights from users with literature, to produce design recommendations for the development of novel LCA tools tailored to the early PD context.
This study originated in collaboration with Thomas Dishion because of concerns that a group format for aggressive children might dampen the effects of cognitive-behavioral intervention. Three hundred sixty aggressive preadolescent children were screened through teacher and parent ratings. Schools were randomized to receive either an individual or a group format of the child component of the same evidence-based program. The results indicate that there is variability in how group-based cognitive-behavioral intervention can affect aggressive children through a long 4-year follow-up after the end of the intervention. Aggressive children who have higher skin conductance reactivity (potentially an indicator of poorer emotion regulation) and who have a variant of the oxytocin receptor gene that may be associated with being hyperinvolved in social bonding have better outcomes in their teacher-rated externalizing behavior outcomes over time if they were seen individually rather than in groups. Analyses also indicated that higher levels of the group leaders’ clinical skills predicted reduced externalizing behavior problems. Implications for group versus individual format of cognitive-behavioral interventions for aggressive children, and for intensive training for group therapists, informed by these results, are discussed.
In evaluating the quality of table eggs and the developmental stages of embryonic eggs, spectroscopic techniques provide greater efficiency than traditional, time-consuming and laborious approaches. This review summarises recent developments in the spectroscopic analysis of table eggs, including the determination of the chemical composition (ratios of performance to standard deviation of 4.38, 2.25, 2.28, 2.31, and 3.03 for fat, moisture, and protein in egg yolk and moisture and protein in egg albumen, respectively, have been reported). A Haugh unit detection accuracy RMSEP (root mean square error of prediction) for quality of 6.29 was obtained by hyperspectral imaging) for table eggs and fertility detection (for white-shell eggs, fertility detection has been realised at a promising rate of 93.5%) and gender determination in hatching eggs. In conclusion, hyperspectral imaging generally outperforms visible or near-infrared reflectance spectroscopy when evaluating both consumption eggs and hatching eggs, and near-infrared reflectance Raman and fluorescence spectroscopy exhibit a strong potential for gender determination prior to hatching. Scientists have attained a correct sexing rate above 90% at 3.5 d of egg incubation without removing the inner shell membrane. In the detection of blood-spot eggs or fertile eggs, eggshell colour proved to be a negative factor.
An experiment was conducted to determine the effects of supplementing different amounts of daidzein in a diet on the growth performance, blood biochemical parameters and meat quality of finishing beef cattle. Thirty finishing Xianan steers were distributed in three groups equilibrated by weight and fed three different dietary treatments (concentrate ratio = 80%): (1) control; (2) 500 mg/kg daidzein and (3) 1000 mg/kg daidzein, respectively. Steers were slaughtered after an 80-day feeding trial. Results showed that daidzein supplementation had no effect on the final body weight, average daily gain and feed conversion rate of steers. Steers fed with 1000 mg/kg daidzein had greater dry matter intake than those fed with control diets. Compared with the control group, the 1000 mg/kg daidzein group had a higher fat thickness, lower shear force and lightness. The pH, drip loss, cooking loss, redness (a*), yellowness (b*), moisture, ash, crude protein and intramuscular fat of the Longissimus dorsi muscle were unaffected by daidzein supplementation. Compared with the control group, the 1000 mg/kg daidzein group significantly increased the serum concentrations of insulin, free fatty acid and Glutamic-pyruvic transaminase. The 500 mg/kg daidzein group significantly increased the serum concentration of tetraiodothyronine compared with the control group. Supplemental daidzein did not affect the blood antioxidant ability and blood immune parameters in serum. In conclusion, daidzein supplementation above 500 mg/day modifies feed intake and metabolic and hormonal profile, with positive and negative effects on meat quality.
Previously, we reported a phylogenetic study of 98 Burkholderia pseudomallei clinical isolates from Hainan, China. Here, we update the B. pseudomallei strain library with 52 strains from newly identified cases dating from 2014 to 2017, analysed by multilocus sequence typing. Twenty-two sequence types (STs) were identified from the 52 cases, illustrating high genetic diversity; five of them (ST1480, ST1481, ST1482, ST1483 and ST1484) were novel. ST46, ST50 and ST58 predominated (34.6%) as was the case in the previous study (35.7%). An e-BURST map of the ST profiles of the two collections of isolates showed their genetic foundation to be largely unchanged. Neighbour-joining tree analysis was suggestive of a close phylogenetic relationship between the novel STs from this series and those first reported from Hainan (ST1105, ST1099, ST55 and ST1095). Moreover, the two novel STs (1481 and 1483) showed close similarity to ST58 which originated in Thailand indicating a close relationship between B. pseudomallei strains from both countries. The previously described allele profiles gmhD-36 and lepA-68 were found for the first time in our strain collections. Our study emphasises the importance of monitoring the epidemiological status and evolutionary trends of B. pseudomallei in China.
The influence of the content of trifluoroacetate (TFA), in the precursor solution, on the critical current density (Jc) of YBa2Cu3O7−x (YBCO) superconducting films was investigated. We found that a TFA/Ba ratio of 0.68 is optimal to obtain high-performance YBCO films. Using this optimal solution, we then developed an ultraviolet (UV) light soaking technique to prepare YBCO films. This resulted in the constituent elements being uniformly distributed in the films, and this then enabled enhanced Jc. The addition of water vapor during the UV soaking process decreased the content of carbon residue in the films, and further increased the Jc of the resulting YBCO films.
Aero-engines usually contain a lot of pipes and cables which have an important influence on product performance and reliability. In this paper, a new pipe routing approach for aero-engines is proposed. First, an adaptive octree modeling method is presented according to the characteristics of the layout space. After considering three types of engineering constraints, the total length of pipelines, the total number of bends and the natural frequency of pipelines are modeled as the optimal objective. Then, a Modified Max-Min Ant System optimization algorithm (MMMAS), which uses layered node selection and dynamic update mechanism, is proposed for pipe routing. For branch pipelines, ant colony searches in groups and parallel to improve the solution quality and speed up the convergence greatly. Finally, numerical comparisons with other current approaches in literatures demonstrate the efficiency and effectiveness of the proposed approach. And a case study of pipe routing for aero-engines is conducted to validate this approach.
Inlet unstart boundary is one of the most important issues of the hypersonic inlet and is also the foundation of the protection control of a scramjet. To solve this problem, the 2D internal steady flow of a 2D mixed internal/external compression hypersonic inlet was numerically simulated at different freestream conditions and backpressures with a RANS (Reynolds-Averaged Navier-Stokes) solver using a RNG (Renormalisation Group) k-ε turbulence model, and two different inlet unstart phenomena were analysed. The dimensional analysis method was introduced to find the essence variables describing the inlet unstart boundary based on “numerical experimental” data in this paper. The dimensionless pressure ratios of the forebody and isolator were analysed respectively. The results show that the unstart boundary of the 2D mixed hypersonic inlet is determined by M0, α and Re0. Pressure ratio π increases with M0 increasing, and it increases firstly and decreases then with α increasing. Pressure ratio π increases with Re0 increasing. Re0 (Re0 < 2 × 107) has a major effect on π and Re0 (Re0 > 2×107) has little effect on π.
Meta-analyses support the efficacy of cognitive–behavioural therapy (CBT) for schizophrenia in western cultures. This study aimed to compare the efficacy of CBT and supportive therapy (ST) for patients with schizophrenia in China.
Method
A multicentre randomized controlled, single-blinded, parallel-group trial enrolled a sample of 192 patients with schizophrenia. All patients were offered 15 sessions of either CBT or ST over 24 weeks and followed up for an additional 60 weeks. All measures used were standardized instruments with good reliability and validity. The Positive and Negative Syndrome Scale (PANSS) was used to assess symptoms of schizophrenia. The Schedule for Assessing Insight (SAI) was used to assess patients’ insight and the Personal and Social Performance Scale (PSP) was used to assess their social functioning.
Results
Effect-size analysis showed that patients made rapid improvements in all symptoms, insight and social functioning as measured by the PANSS, SAI and PSP at 12 and 24 weeks and maintained these improvements over the course of the study to 84 weeks. Patients in the CBT group showed significantly greater and more durable improvement in PANSS total score (p = 0.045, between-group d = 0.48), positive symptoms (p = 0.018, between-group d = 0.42) and social functioning (p = 0.037, between-group d = 0.64), with significant differences emerging after completion of therapy.
Conclusions
Both CBT and ST combined with medication had benefits on psychopathology, insight and social functioning of patients with schizophrenia. CBT was significantly more effective than ST on overall, positive symptoms and social functioning of patients with schizophrenia in the long term.
Imprinting control regions (ICRs) play a fundamental role in establishing and maintaining the non-random monoallelic expression of certain genes, via common regulatory elements such as non-coding RNAs and differentially methylated regions (DMRs) of DNA. We recently surveyed DNA methylation levels within four ICRs (H19-ICR, IGF2-DMR, KvDMR, and NESPAS-ICR) in whole-blood genomic DNA from 128 monozygotic (MZ) and 128 dizygotic (DZ) human twin pairs. Our analyses revealed high individual variation and intra-domain covariation in methylation levels across CpGs and emphasized the interaction between epigenetic variation and the underlying genetic sequence in a parent-of-origin fashion. Here, we extend our analysis to conduct two genome-wide screenings of single nucleotide polymorphisms (SNPs) underlying either intra-domain covariation or parent-of-origin-dependent association with methylation status at individual CpG sites located within ICRs. Although genome-wide significance was not surpassed due to sample size limitations, the most significantly associated SNPs found through multiple-trait genome-wide association (MQFAM) included the previously described rs10732516, which is located in the vicinity of the H19-ICR. Similarly, we identified an association between rs965808 and methylation status within the NESPAS-ICR. This SNP is positioned within an intronic region of the overlapping genes GNAS and GNAS-AS1, which are imprinted genes regulated by the NESPAS-ICR. Sixteen other SNPs located in regions apart from the analyzed regions displayed suggestive association with intra-domain methylation. Additionally, we identified 13 SNPs displaying parent-of-origin association with individual methylation sites through family-based association testing. In this exploratory study, we show the value and feasibility of using alternative GWAS approaches in the study of the interaction between epigenetic state and genetic sequence within imprinting regulatory domains. Despite the relatively small sample size, we identified a number of SNPs displaying suggestive association either in a domain-wide or in a parent-of-origin fashion. Nevertheless, these associations will require future experimental validation or replication in larger and independent samples.
X-ray source IGR J17091-3624 was discovered by INTEGRAL observatory on 2003 April (Kuulkers 2003). A outburst was detected with Swift/Burst Alert Telescope (BAT) in late January 2011 (Krimm 2011). IGR J17091-3624 has a similar timing phenomena to microquasar GRS 1915+105(Belloni 2000; Altamirano 2011). We have analyzed the evolution of temporal and spectral characteristic of IGR J17091-3624 during the 2011 outburst. We find that (1) all the QPOs can be divided into two types, QPO-AB and QPO-C, (2) a small outburst tracks clockwise in the HID, (3) the relationship between hardness and disk color temperature forms a V-shape. Those results will give a strong constraint on the disk radiative process.
Lense-Thirring QPO model is a promising model to explain QPO phenomena (Ingram et al. (2009)). In this model the QPO results from Lense-Thirring precession of a optical translucent inner hot flow in a truncated disc geometry. Now we check this model with different types QPO (see (Belloni et al. (2011)) for a recent review) of black hole transient (BHT) GX 339-4 2010 outburst and suggest type C QPOs are mainly coincident with this model prediction while type B QPOs are not.
An inventory of topsoil soil organic carbon (SOC) content in household farms was performed in a village from a red earth region in Jiangxi Province, China in 2003. In this region, the farmland managed by each household is fragmented, consisting of several plots of land that are not necessarily adjacent to each other. A statistical analysis of SOC variation with land use and household management type, and with crop management practices was conducted. Plot size ranged from 0·007 to 0·630 ha with a mean of 0·1 ha, and SOC content ranged from 1·72 to 25·2 g/kg, varying widely with a variety of land management and agricultural practices, arising from individual household behaviours. The mean SOC content in plot size <0·1 ha was 20% lower than in plot size ⩾0·1 ha. SOC of dry crop plots was 70% lower than that in rice paddies, and SOC of plots contracted from the village was almost double that of plots leased from other householders. Moreover, a 30% increase in SOC was observed with green manure cultivation, and a 55% increase under triple cropping. The difference in SOC levels between the least and most favourable cases of household land management and agricultural practice was up to 150%. The results suggest that policies targeted at crop management alone may not deliver the expected SOC benefits if household land management is also not improved.
Nucleation can play an important role during the formation of silicides, especially when the difference in Gibbs free energy ΔG between the existing and newly formed phase is small. In this work, it is shown that the addition of elements that form a solid solution with either the existing or nucleating phase influences the entropy of mixing and thus changes ΔG. In this way, the height of the nucleation barrier may be controlled, thus controlling the nucleation temperature. The influence of mixing entropy on silicide nucleation is illustrated by experiments for two ternary systems: Co–Mn–Si and Ni–Pd–Si. It is shown that the nucleation temperature of CoSi2 is increased by the addition of Mn, the nucleation temperature of MnSi1.7 is increased by the presence of Co, the nucleation temperature of NiSi2 is increased by the addition of Pd, and the nucleation temperature of PdSi is decreased by the addition of Ni. In all four cases, the effect of the alloying element on the nucleation temperature can be explained by a model on the basis of the concept of mixing entropy.
We report on the nonlinear optical properties of cadmium telluride (CdTe) semiconductor colloidal quantum dots. Transmission electron microscopy measurements revealed that the size of CdTe nanocrystal quantum dots, dependent on the growth reaction time, was ∼2-10 nm or near the exciton Bohr radius. The strong blue-shifts of the CdTe, CdSe and CdS nanocrystal absorption spectra and the atomic-like discrete energy states of exciton indicate an exciton quantum confinement. These are completely different optical properties from the bulk crystals. The energy transition for exciton absorption was assigned as h1→e+, h2→e+, h1+→e-, and h2+→e- for the 1st, 2nd, 3rd and 4th exciton absorption peaks. Z-scan and I-scan nonlinear spectroscopy revealed that the CdTe nanocrystal quantum dot in toluene (∼8 × 10-5 mol/L) has the negative nonlinearity (self-defocusing) with ∼ -1 × 10-13 m2/W and a high nonlinear figure of merit of ∼200. For the optical power self-limiting experiment, the CdTe nanocrystal was almost opaque above ∼0.8 MW/cm2 at the position of z∼6.9 cm.
The silicide formation for Ni/Pd and Pd/Ni bilayers on Si(100) substrates was investigated. X-ray diffraction and photoelectron spectroscopy (XPS) depth profiling have been applied to study the phase formation of the silicide. We found that with addition of Pd into Ni/Si, a uniform layer of ternary Ni1−xPdxSi layer formed and kept stable for a wide temperature range. The lattice parameter of Ni1−xPdxSi as a function of Pd addition was calculated. The nucleation temperature of NiSi2 was delayed due to the addition of Pd. The higher the Pd addition, the larger the increase in NiSi2 nucleation temperature. We also studied the effect on the addition of Ni to the Pd/Si reaction. For pure Pd/Si reaction PdSi nucleated from Pd2Si at 750°C or above. For Ni/Pd/Si reaction, Pd2Si changed to Ni1−xPdxSi at temperature lower than 750°C due to the incorporation of Ni. The phenomena were explained by classic nucleation theory taking into account the effect of mixing entropy effect.
Ultra-thin epitaxial CoSi2 films formed by Co(3∼5nm)/Ti(1 nm)/Si(100) and Co(3∼5nm)/Si(lnm)/Ti(Inm)/Si are studied. The multilayers are deposited by ion-beam sputtering. Rapid thermal annealing (RTA) is used for silicidation. XRD, RBS, TEM, AFM, four-point probe, I-V and C-V measurements are carried out for characterization. The XRD spectra show the CoSi2 film formed by Co/Ti/Si or Co/Si/Ti/Si solid phase epitaxy has, epitaxial characteristic. XTEM shows that the film is continuous. RBS/Channeling shows that the formed CoSi2 has sharp interface with a minimum channeling yield of Co signal of 40%. AFM shows that the surface of ultra-thin CoSi2 film is smooth with a roughness of nearly 0.7 nm. The Rs∼T relationship shows that the CoSi2 films formed by Co/Si/Ti/Si reaction have the best thermal stability (stable up to 900°C). Those formed by Co/Ti/Si reaction are stable up to 850°C, while those formed by Co/Si reaction are only stable up to 750°C. By fitting the experimental I-V and C-V curves of the epitaxial CoSi2/Si Schottky diodes, barrier heights of around 0.6 eV and close to unity ideality factors are obtained.