We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs), including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are widely found in plant oils and marine organisms. These fatty acids demonstrate significant biological effects, and their adequate intake is essential for maintaining health. However, modern diets often lack sufficient n-3 PUFAs, especially among populations that consume little fish or seafood,leading to a growing interest in n-3 PUFAs supplementation in nutrition and health research. In recent decades, the role of n-3 PUFAs in preventing and treating various diseases has gained increasing attention, particularly in cardiovascular, neurological, ophthalmic, allergic, hepatic, and oncological fields.In orthopedics, n-3 PUFAs exert beneficial effects through several mechanisms, including modulation of inflammatory responses, enhancement of cartilage repair, and regulation of bone metabolism. These effects demonstrate potential for the treatment of conditions such as osteoarthritis (OA), rheumatoid arthritis (RA), gout, osteoporosis (OP), fractures, sarcopenia, and spinal degenerative diseases (SDD). This review summarizes the clinical applications of n-3 PUFAs, with a focus on their research progress in the field of orthopedics, and explores their potential in the treatment of orthopedic diseases.
A linear stability model based on a phase-field method is established to study the formation of ripples on the ice surface. The pattern on horizontal ice surfaces, e.g. glaciers and frozen lakes, is found to be originating from a gravity-driven instability by studying ice–water–air flows with a range of water and ice thicknesses. Contrary to gravity, surface tension and viscosity act to suppress the instability. The results demonstrate that a larger value of either water thickness or ice thickness corresponds to a longer dominant wavelength of the pattern, and a favourable wavelength of 90 mm is predicted, in agreement with observations from nature. Furthermore, the profiles of the most unstable perturbations are found to be with two peaks at the ice–water and water–air interfaces whose ratio decreases exponentially with the water thickness and wavenumber.
Internet addiction (IA) refers to excessive internet use that causes cognitive impairment or distress. Understanding the neurophysiological mechanisms underpinning IA is crucial for enabling an accurate diagnosis and informing treatment and prevention strategies. Despite the recent increase in studies examining the neurophysiological traits of IA, their findings often vary. To enhance the accuracy of identifying key neurophysiological characteristics of IA, this study used the phase lag index (PLI) and weighted PLI (WPLI) methods, which minimize volume conduction effects, to analyze the resting-state electroencephalography (EEG) functional connectivity. We further evaluated the reliability of the identified features for IA classification using various machine learning methods.
Methods
Ninety-two participants (42 with IA and 50 healthy controls (HCs)) were included. PLI and WPLI values for each participant were computed, and values exhibiting significant differences between the two groups were selected as features for the subsequent classification task.
Results
Support vector machine (SVM) achieved an 83% accuracy rate using PLI features and an improved 86% accuracy rate using WPLI features. t-test results showed analogous topographical patterns for both the WPLI and PLI. Numerous connections were identified within the delta and gamma frequency bands that exhibited significant differences between the two groups, with the IA group manifesting an elevated level of phase synchronization.
Conclusions
Functional connectivity analysis and machine learning algorithms can jointly distinguish participants with IA from HCs based on EEG data. PLI and WPLI have substantial potential as biomarkers for identifying the neurophysiological traits of IA.
This study elucidated the impacts of coenzyme Q10 (COQ10) supplementation in a high-fat diet (HFD) on growth, lipid metabolism and mitochondrial function in spotted seabass (Lateolabrax maculatus). Totally five diets were formulated: a diet with normal fat content (11 % lipid, NFD), a HFD (17 % lipid) and three additional diets by supplementing 5, 20 or 80 mg/kg of COQ10 to the HFD. After an 8-week culture period, samples were collected and analysed. The results demonstrated that COQ10 inclusion prevented the HFD-induced deterioration of growth performance and feed utilisation. COQ10 alleviated the deposition of saturated fatty acids following HFD intake and promoted the assimilation of n-3 and n-6 PUFA. Moreover, COQ10 administration inhibited the surge in serum transaminase activity and reduced hepatic lipid content following HFD ingestion, which was consistent with the results of oil red O staining. In addition, HFD feeding led to reduced hepatic citrate synthase and succinate dehydrogenase activities and decreased ATP content. Notably, COQ10 administration improved these indices and up-regulated the expression of mitochondrial biogenesis-related genes (pgc-1α, pgc-1β, nrf-1, tfam) and autophagy-related genes (pink1, mul1, atg5). In summary, supplementing 20–80 mg/kg of COQ10 in the HFD promoted growth performance, alleviated hepatic fat accumulation and enhanced liver mitochondrial function in spotted seabass.
Recent developments have indicated a potential association between tinnitus and COVID-19. The study aimed to understand tinnitus following COVID-19 by examining its severity, recovery prospects, and connection to other lasting COVID-19 effects. Involving 1331 former COVID-19 patients, the online survey assessed tinnitus severity, cognitive issues, and medical background. Of the participants, 27.9% reported tinnitus after infection. Findings showed that as tinnitus severity increased, the chances of natural recovery fell, with more individuals experiencing ongoing symptoms (p < 0.001). Those with the Grade II mild tinnitus (OR = 3.68; CI = 1.89–7.32; p = 0.002), Grade III tinnitus (OR = 3.70; CI = 1.94–7.22; p < 0.001), Grade IV (OR = 6.83; CI = 3.73–12.91; p < 0.001), and a history of tinnitus (OR = 1.96; CI = 1.08–3.64; p = 0.03) had poorer recovery outcomes. Grade IV cases were most common (33.2%), and severe tinnitus was strongly associated with the risk of developing long-term hearing loss, anxiety, and emotional disorders (p < 0.001). The study concludes that severe post-COVID tinnitus correlates with a worse prognosis and potential hearing loss, suggesting the need for attentive treatment and management of severe cases.
The associations between obesity and liver diseases are complex and diverse. To explore the causal relationships between obesity and liver diseases, we applied two-sample Mendelian randomisation (MR) and multivariable MR analysis. The data of exposures (BMI and WHRadjBMI) and outcomes (liver diseases and liver function biomarker) were obtained from the open genome-wide association study database. A two-sample MR study revealed that the genetically predicted BMI and WHRadjBMI were associated with non-alcoholic fatty liver disease, liver fibrosis and autoimmune hepatitis. Obesity was not associated with primary biliary cholangitis, liver failure, liver cell carcinoma, viral hepatitis and secondary malignant neoplasm of liver. A higher WHRadjBMI was associated with higher levels of biomarkers of lipid accumulation and metabolic disorders. These findings indicated independent causal roles of obesity in non-alcoholic fatty liver disease, liver fibrosis and impaired liver metabolic function rather than in viral or autoimmune liver disease.
Repulsive guidance molecule b (RGMb), a glycosylphosphatidylinositol-anchored member of the RGM family, is initially identified as a co-receptor of bone morphogenetic protein (BMP) in the nervous system. The expression of RGMb is transcriptionally regulated by dorsal root ganglion 11 (DRG11), which is a transcription factor expressed in embryonic DRG and dorsal horn neurons and plays an important role in the development of sensory circuits. RGMb is involved in important physiological processes such as embryonic development, immune response, intercellular adhesion and tumorigenesis. Furthermore, RGMb is mainly involved in the regulation of RGMb–neogenin–Rho and BMP signalling pathways. The recent discovery of programmed death-ligand 2 (PD-L2)–RGMb binding reveals that the cell signalling network and functional regulation centred on RGMb are extremely complex. The latest report suggests that down-regulation of the PD-L2–RGMb pathway in the gut microbiota promotes an anti-tumour immune response, which defines a potentially effective immune strategy. However, the biological function of RGMb in a variety of human diseases has not been fully determined, and will remain an active research field. This article reviews the properties and functions of RGMb, focusing on its role under various physiological and pathological conditions.
Chinese nurses working with immense stress may have issues with burnout during COVID-19 regular prevention and control. There were a few studies investigating status of burnout and associated factors among Chinese nurses. However, the relationships remained unclear.
Objectives
To investigate status and associated factors of nurses’ burnout during COVID-19 regular prevention and control.
Methods
784 nurses completed questionnaires including demographics, Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, Insomnia Severity Index, Impact of Event Scale-revised, Perceived Social Support Scale, Connor–Davidson Resilience Scale, General Self-efficacy Scale and Maslach Burnout Inventory.
Results
310 (39.5%), 393 (50.1%) and 576 (73.5%) of respondents were at high risk of emotional exhaustion (EE), depersonalization (DP) and reduced personal accomplishment (PA). The risk of EE, DP and reduced PA were moderate, high and high. Nurses with intermediate and senior professional rank and title and worked >40 h every week had lower scores in EE. Those worked in low-risk department reported lower scores in PA. Anxiety, post-traumatic stress disorder (PTSD), self-efficacy and social support were influencing factors of EE and DP, while social support and resilience were associated factors of PA.
Conclusion
Chinese nurses’ burnout during COVID-19 regular prevention and control was serious. Professional rank and title, working unit, weekly working hours, anxiety, PTSD, self-efficacy, social support and resilience were associated factors of burnout.
Evidence of the relationship between fecal short-chain fatty acids (SCFA) levels, dietary quality and type 2 diabetes mellitus (T2DM) in rural populations is limited. Here, we aimed to investigate the association between fecal SCFA levels and T2DM and the combined effects of dietar quality on T2DM in rural China. In total, 100 adults were included in the case–control study. Dietary quality was assessed by the Alternate Healthy Eating Index 2010 (AHEI-2010), and SCFA levels were analysed using the GC-MS system. Generalised linear regression was conducted to calculate the OR and 95 % CI to evaluate the effect of SCFA level and dietary quality on the risk of T2DM. Finally, an interaction was used to study the combined effect of SCFA levels and AHEI-2010 scores on T2DM. T2DM participants had lower levels of acetic and butyric acid. Generalised linear regression analysis revealed that the OR (95 % CI) of the highest acetic and butyric acid levels were 0·099 (0·022, 0·441) and 0·210 (0·057, 0·774), respectively, compared with the subjects with the lowest tertile of level. We also observed a significantly lower risk of T2DM with acetic acid levels > 1330·106 μg/g or butyric acid levels > 585·031 μg/g. Moreover, the risks of higher acetic and butyric acid levels of T2DM were 0·007 (95 % CI: 0·001, 0·148), 0·005 (95 % CI: 0·001, 0·120) compared with participants with lower AHEI-2010 scores (all P < 0·05). Acetate and butyrate levels may be important modifiable beneficial factors affecting T2DM in rural China. Improving dietary quality for body metabolism balance should be encouraged to promote good health.
With the wide application of quadrotor unmanned aerial vehicles (UAVs), the requirements for their safety and reliability are becoming increasingly stringent. In this paper, based on the feedback of airframe performance health perception information and the predictive function control strategy, the autonomous maintenance of a quadrotor UAV with multi-actuator degradation is realised. Autonomous maintenance architecture is constructed by the predictive maintenance (PdM) idea and the Laguerre function model predictive pontrol (LF-MPC) strategy. Using the two-stage Kalman filter (TSKF) method, based on the established UAV degradation model, the aircraft state and actuator degradation state are predicted simultaneously. For the predictive perception of system health, on the one hand, the system health degree (HD) based on Mahalanobis distance is defined by the degree of airframe state deviation from the expected state, and then the failure threshold of the UAV is obtained. On the other hand, according to the degradation state of each actuator, a comprehensive degradation variable fused with different weight coefficients of multiple actuators degradation is used to obtain the probability density function (PDF) of remaining useful life (RUL) prediction. For the autonomous maintenance of system health, the LF-MPC weight matrixes are adjusted adaptively in real-time based on the HD evaluation, to achieve a compromise balance between UAV performance and control effect, and greatly extend the working time of UAV. Simulation results verified the effectiveness of the proposed method.
Written corrective feedback (WCF) is a ubiquitous pedagogical activity in second language (L2) classrooms and has become a key area of inquiry in L2 writing research. While there have been several reviews on experimental WCF research, there is not yet a synthesis of naturalistic classroom studies where the type and amount of feedback provided on students' writing performance is not manipulated or controlled. This state-of-the-art article intends to fill the gap by providing a comprehensive and critical review of naturalistic WCF studies in L2 writing, with significant implications for practice and research. A systematic search generated 50 empirical studies that met our inclusion criteria for the current review, which revealed four major themes: (1) teacher WCF practices in L2 writing classrooms, (2) L2 learner responses to WCF, (3) stakeholders’ beliefs and perspectives on WCF, and (4) WCF-related motivation and emotions. Based on the reviewed evidence, we propose pedagogical implications for enhancing teacher WCF practices and student learning, as well as potential avenues for further exploration. This article contributes to a nuanced understanding of current empirical advances in naturalistic research on WCF in L2 writing, providing insights to inform WCF pedagogy and new lines of inquiry.
Knowledge of clay mineralogy is essential for understanding the source areas and weathering environments of fluvial sediments, particularly in large reservoirs facing serious problems with sediment deposition, such as the Three Gorges Reservoir (TGR) in east-central China. The purpose of the present study was to identify the sediment provenances and weathering regimes contributing to the sediment load in the TGR by determining the clay-mineral and geochemical compositions of surface sediments during various seasons. X-ray diffractometry and scanning electron microscopy (SEM) were used to identify the clay minerals. The results showed that illite was the dominant mineral, followed in order by kaolinite, chlorite, and montmorillonite. From a mineralogical perspective, distal sources were the main contributors to the TGR sediments, and regional sources (surrounding tributaries) also contributed much during the three seasons, while proximal sources (hillslope soils) supplied sediment in the flood season but not in the other two seasons. The geochemical and hydrological data generally supported the mineralogical results. In the flood season, the chemical indices of the TGR sediments were >0.4, showing that the sediments contained Al-rich illite minerals and experienced intense hydrolysis. In the other two seasons the TGR sediments were enriched in Fe- and Mg-rich illite minerals, resulting from strong physical weathering. Furthermore, precipitation, rather than air temperature or latitude, was the factor that controlled weathering intensity. These findings provide deep insights into the sediment cycle and chemical weathering in this large reservoir basin.
Carotenoids are important bioactive substances in breast milk, the profile of which is seldom studied. This study aimed to explore the profile of carotenoids in breast milk and maternal/cord plasma of healthy mother–neonate pairs in Shanghai, China, and their correlation with dietary intake. Maternal blood, umbilical cord blood and breast milk samples from five lactation stages (colostrum, transitional milk and early-, mid- and late-term mature milk) were collected. Carotenoid levels were analysed by HPLC. Carotenoid levels in breast milk changed as lactation progressed (P < 0·001). β-Carotene was the primary carotenoid in colostrum. Lutein accounted for approximately 50 % of total carotenoids in transitional milk, mature milk and cord blood. Positive correlations were observed between five carotenoids in umbilical cord blood and maternal blood (P all < 0·001). β-Carotene levels were also correlated between maternal plasma and three stages of breast milk (r = 0·605, P < 0·001; r = 0·456, P = 0·011, r = 0·446; P = 0·013, respectively). Dietary carotenoid intakes of lactating mothers also differed across lactation stages, although no correlation with breast milk concentrations was found. These findings suggest the importance of exploring the transport mechanism of carotenoids between mothers and infants and help guide the development of formulas for Chinese infants as well as the nutritional diets of lactating mothers.
Job knowledge characteristics have long been regarded as relatively fixed. However, this may no longer be the case given the dynamic and complex situations faced by employees during the COVID-19 pandemic. On the basis of event system theory and the work design literature, we argue that the onset of COVID-19 created an immediate decrease in job knowledge characteristics, which gradually increased over time in the post-onset period because of employees’ coping with the pandemic. The rate of increase in job knowledge characteristics is higher for those with higher individual task adaptivity than for others. We further argue that changes in job knowledge characteristics produced changes in job stress, and that this effect is weakened by job security. We conducted a 6-month, 6-wave longitudinal survey to gather data from 235 employees in Macau, China covering the pre-onset, onset, and post-onset periods of the COVID-19 outbreak. The results, based on discontinuous growth modeling and latent change score modeling, support our arguments. Our study advances the dynamic view of work design by identifying how a macro event may shape job knowledge characteristics and the implications of a time-to-time change in job knowledge characteristics. Overall, we suggest that there are psychological costs when employees cope at work with the business interruptions caused by COVID-19.
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Breast cancer is a high-risk disease with a high mortality rate among women. Chemotherapy plays an important role in the treatment of breast cancer. However, chemotherapy eventually results in tumours that are resistant to drugs. In recent years, many studies have revealed that the activation of Wnt/β-catenin signalling is crucial for the emergence and growth of breast tumours as well as the development of drug resistance. Additionally, drugs that target this pathway can reverse drug resistance in breast cancer therapy. Traditional Chinese medicine has the properties of multi-target and tenderness. Therefore, integrating traditional Chinese medicine and modern medicine into chemotherapy provides a new strategy for reversing the drug resistance of breast tumours. This paper mainly reviews the possible mechanism of Wnt/β-catenin in promoting the process of breast tumour drug resistance, and the progress of alkaloids extracted from traditional Chinese medicine in the targeting of this pathway in order to reverse the drug resistance of breast cancer.
Germplasm innovation can provide materials for breeding sugarcane cultivars. Saccharum officinarum is the main source of high-sugar and high-yield genes in sugarcane breeding. ‘Nobilization’ is the theoretical basis for exploiting S. officinarum, and S. officinarum authenticity directly affects sugarcane nobility breeding efficiency. Herein, the authenticity of 22 SLC-series S. officinarum clones imported from Sri Lanka and preserved in the China National Germplasm Repository of Sugarcane (NGRS) was explored by four-primer amplification-arrested mutation PCR (ARMS PCR) and somatic chromosome number counting. The amplified bands from SLC 08 120 and SLC 08 131 were the same with those from S. officinarum clone Badila, i.e. a common band of 428 bp and a S. officinarum-specific band of 278 bp, hence they were tentatively assigned as S. officinarum clones. The other 20 SLC clones had both 278 bp (S. officinarum-specific) and 203 bp (S. spontaneum-specific) bands, which are hybrid characteristics. In addition, the chromosome numbers of SLC 08 120 and SLC 08 131 are both 80, belong to typical S. officinarum. While the chromosome numbers of the other 20 materials are ranging from 101 to 129, consistent with hybrids of S. officinarum and S. spontaneum. This molecular cytological characterization indicates that among the 22 introduced SLC-series clones, only two, SLC 08 120 and SLC 08 131, were S. officinarum. Future agronomic trait and resistance analyses could facilitate their use as crossing parents in sugarcane breeding.
There is still controversy about optimal dietary iodine intake as the Universal Salt Iodization policy enforcement in China. A modified iodine balance study was thus conducted to explore the suitable iodine intake in Chinese adult males using the iodine overflow hypothesis. In this study, thirty-eight apparently healthy males (19·1 (sd 0·6) years) were recruited and provided with designed diets. After the 14-d iodine depletion, daily iodine intake gradually increased in the 30-d iodine supplementation, consisting of six stages and each of 5 d. All foods and excreta (urine, faeces) were collected to examine daily iodine intake, iodine excretion and the changes of iodine increment in relation to those values at stage 1. The dose–response associations of iodine intake increment with excretion increment were fitted by the mixed effects models, as well as with retention increment. Daily iodine intake and excretion were 16·3 and 54·3 μg/d at stage 1, and iodine intake increment increased from 11·2 μg/d at stage 2 to 118·0 μg/d at stage 6, while excretion increment elevated from 21·5 to 95·0 μg/d. A zero iodine balance was dynamically achieved as 48·0 μg/d of iodine intake. The estimated average requirement and recommended nutrient intake were severally 48·0 and 67·2 μg/d, which could be corresponded to a daily iodine intake of 0·74 and 1·04 μg/kg per d. The results of our study indicate that roughly half of current iodine intakes recommendation could be enough in Chinese adult males, which would be beneficial for the revision of dietary reference intakes.