We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This document introduces and explains common implementation concepts and frameworks relevant to healthcare epidemiology and infection prevention and control and can serve as a stand-alone guide or be paired with the “SHEA/IDSA/APIC Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals: 2022 Updates,” which contain technical implementation guidance for specific healthcare-associated infections. This Compendium article focuses on broad behavioral and socio-adaptive concepts and suggests ways that infection prevention and control teams, healthcare epidemiologists, infection preventionists, and specialty groups may utilize them to deliver high-quality care. Implementation concepts, frameworks, and models can help bridge the “knowing-doing” gap, a term used to describe why practices in healthcare may diverge from those recommended according to evidence. It aims to guide the reader to think about implementation and to find resources suited for a specific setting and circumstances by describing strategies for implementation, including determinants and measurement, as well as the conceptual models and frameworks: 4Es, Behavior Change Wheel, CUSP, European and Mixed Methods, Getting to Outcomes, Model for Improvement, RE-AIM, REP, and Theoretical Domains.
The combination of advances in knowledge, technology, changes in consumer preference and low cost of manufacturing is accelerating the next technology revolution in crop, livestock and fish production systems. This will have major implications for how, where and by whom food will be produced in the future. This next technology revolution could benefit the producer through substantial improvements in resource use and profitability, but also the environment through reduced externalities. The consumer will ultimately benefit through more nutritious, safe and affordable food diversity, which in turn will also contribute to the acceleration of the next technology. It will create new opportunities in achieving progress towards many of the Sustainable Development Goals, but it will require early recognition of trends and impact, public research and policy guidance to avoid negative trade-offs. Unfortunately, the quantitative predictability of future impacts will remain low and uncertain, while new chocks with unexpected consequences will continue to interrupt current and future outcomes. However, there is a continuing need for improving the predictability of shocks to future food systems especially for ex-ante assessment for policy and planning.
This study sought to conduct a comprehensive search for genetic risk of cognitive decline in the context of geriatric depression.
Design:
A genome-wide association study (GWAS) analysis in the Neurocognitive Outcomes of Depression in the Elderly (NCODE) study.
Setting:
Longitudinal, naturalistic follow-up study.
Participants:
Older depressed adults, both outpatients and inpatients, receiving care at an academic medical center.
Measurements:
The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) neuropsychological battery was administered to the study participants at baseline and a minimum of twice within a subsequent 3-year period in order to measure cognitive decline. A GWAS analysis was conducted to identify genetic variation that is associated with baseline and change in the CERAD Total Score (CERAD-TS) in NCODE.
Results:
The GWAS of baseline CERAD-TS revealed a significant association with an intergenic single-nucleotide polymorphism (SNP) on chromosome 6, rs17662598, that surpassed adjustment for multiple testing (p = 3.7 × 10−7; false discovery rate q = 0.0371). For each additional G allele, average baseline CERAD-TS decreased by 8.656 points. The most significant SNP that lies within a gene was rs11666579 in SLC27A1 (p = 1.1 × 10−5). Each additional copy of the G allele was associated with an average decrease of baseline CERAD-TS of 4.829 points. SLC27A1 is involved with processing docosahexaenoic acid (DHA), an endogenous neuroprotective compound in the brain. Decreased levels of DHA have been associated with the development of Alzheimer’s disease. The most significant SNP associated with CERAD-TS decline over time was rs73240021 in GRXCR1 (p = 1.1 × 10−6), a gene previously linked with deafness. However, none of the associations within genes survived adjustment for multiple testing.
Conclusions:
Our GWAS of cognitive function and decline among individuals with late-life depression (LLD) has identified promising candidate genes that, upon replication in other cohorts of LLD, may be potential biomarkers for cognitive decline and suggests DHA supplementation as a possible therapy of interest.
A national need is to prepare for and respond to accidental or intentional disasters categorized as chemical, biological, radiological, nuclear, or explosive (CBRNE). These incidents require specific subject-matter expertise, yet have commonalities. We identify 7 core elements comprising CBRNE science that require integration for effective preparedness planning and public health and medical response and recovery. These core elements are (1) basic and clinical sciences, (2) modeling and systems management, (3) planning, (4) response and incident management, (5) recovery and resilience, (6) lessons learned, and (7) continuous improvement. A key feature is the ability of relevant subject matter experts to integrate information into response operations. We propose the CBRNE medical operations science support expert as a professional who (1) understands that CBRNE incidents require an integrated systems approach, (2) understands the key functions and contributions of CBRNE science practitioners, (3) helps direct strategic and tactical CBRNE planning and responses through first-hand experience, and (4) provides advice to senior decision-makers managing response activities. Recognition of both CBRNE science as a distinct competency and the establishment of the CBRNE medical operations science support expert informs the public of the enormous progress made, broadcasts opportunities for new talent, and enhances the sophistication and analytic expertise of senior managers planning for and responding to CBRNE incidents.
This article produces the first findings on changes in household and family structure in England and Wales during 1851–1911, using the recently available Integrated Census Microdata (I-CeM) – a complete count database of individual-level data extending to some 188 million records. As such, it extends and updates the important overview article published in Continuity and Change by Michael Anderson in 1988. The I-CeM data shed new light on transitions in household structure and family life during this period, illustrating both continuities and change in a number of key areas: family composition; single parent families; living alone; extended households; childhood; leaving home and marriage patterns.
We describe the investigation of two temporally coincident illness clusters involving salmonella and Staphylococcus aureus in two states. Cases were defined as gastrointestinal illness following two meal events. Investigators interviewed ill persons. Stool, food and environmental samples underwent pathogen testing. Alabama: Eighty cases were identified. Median time from meal to illness was 5·8 h. Salmonella Heidelberg was identified from 27 of 28 stool specimens tested, and coagulase-positive S. aureus was isolated from three of 16 ill persons. Environmental investigation indicated that food handling deficiencies occurred. Colorado: Seven cases were identified. Median time from meal to illness was 4·5 h. Five persons were hospitalised, four of whom were admitted to the intensive care unit. Salmonella Heidelberg was identified in six of seven stool specimens and coagulase-positive S. aureus in three of six tested. No single food item was implicated in either outbreak. These two outbreaks were linked to infection with Salmonella Heidelberg, but additional factors, such as dual aetiology that included S. aureus or the dose of salmonella ingested may have contributed to the short incubation periods and high illness severity. The outbreaks underscore the importance of measures to prevent foodborne illness through appropriate washing, handling, preparation and storage of food.
Woven composite specimens with embedded fibre Bragg grating (FBG) sensor networks were impacted at low velocities, while global measurements of contact forces and dissipated energies were obtained from drop tower measurements, and local residual, post-impact strain values were obtained from the FBG sensors. Critical damage events were identified in the global data for these specimens and damage signatures in the residual strain data corresponding to these critical damage events were correlated. The results indicate that the full spectral scan information from the sensor network, although obtainable at a lower scan rate, provide more reliable residual lifetime information than average residual strains.
No standard exists for provision of care following catastrophic natural disasters. Host nations, funders, and overseeing agencies need a method to identify the most effective interventions when allocating finite resources. Measures of effectiveness are real-time indicators that can be used to link early action with downstream impact.
Hypothesis
Group consensus methods can be used to develop measures of effectiveness detailing the major functions of post natural disaster acute phase medical response.
Methods
A review of peer-reviewed disaster response publications (2001-2011) identified potential measures describing domestic and international medical response. A steering committee comprised of six persons with publications pertaining to disaster response, and those serving in leadership capacity for a disaster response organization, was assembled. The committee determined which measures identified in the literature review had the best potential to gauge effectiveness during post-disaster acute-phase medical response. Using a modified Delphi technique, a second, larger group (Expert Panel) evaluated these measures and novel measures suggested (or “free-texted”) by participants for importance, validity, usability, and feasibility. After three iterations, the highest rated measures were selected.
Results
The literature review identified 397 measures. The steering committee approved 116 (29.2%) of these measures for advancement to the Delphi process. In Round 1, 25 (22%) measures attained >75% approval and, accompanied by 77 free-text measures, graduated to Round 2. There, 56 (50%) measures achieved >75% approval. In Round 3, 37 (66%) measures achieved median scores of 4 or higher (on a 5-point ordinal scale). These selected measures describe major aspects of disaster response, including: Evaluation, Treatment, Disposition, Public Health, and Team Logistics. Of participants from the Expert Panel, 24/39 (63%) completed all rounds. Thirty-three percent of these experts represented international agencies; 42% represented US government agencies.
Conclusion
Experts identified response measures that reflect major functions of an acute medical response. Measures of effectiveness facilitate real-time assessment of performance and can signal where practices should be improved to better aid community preparedness and response. These measures can promote unification of medical assistance, allow for comparison of responses, and bring accountability to post-disaster acute-phase medical care. This is the first consensus-developed reporting tool constructed using objective measures to describe the functions of acute phase disaster medical response. It should be evaluated by agencies providing medical response during the next major natural disaster.
DaftaryRK, CruzAT, ReavesEJ, BurkleFMJr, ChristianMD, FagbuyiDB, GarrettAL, KapurGB, SirbaughPE. Making Disaster Care Count: Consensus Formulation of Measures of Effectiveness for Natural Disaster Acute Phase Medical Response. Prehosp Disaster Med. 2014;29(5):1-7.
We have combined 22 deep Chandra ACIS-I pointings to map over one square degree of the Carina complex. Our x-ray survey detects 69 of 70 known O-type stars and 61 of 130 known early B stars. The majority of single O stars display soft X-ray spectra and have a mean log LX/Lbol ≈ −7.5 suggesting shocks embedded in the O-star winds. Over OB stars show unusually high X-ray luminosities, high shock temperatures or time variability, not predicted for embedded wind shocks.
The rate of leaf extension in swards of the perennial ryegrass cv. Perma was monitored continuously from March 1976 to September 1977 in Northern Ireland. In this period air temperature and soil water potential were shown to be closely correlated with leaf extension rate. Simple linear expressions are shown to adequately describe the relationship between temperature and leaf extension rate when the year is divided into a winter phase, in which sward growth is very slow, and the remainder of the year in which temperature is high enough to allow significant sward production. Leaf extension growth occurred at all temperatures above freezing point. Soil water potentials of 0·15 MPa are shown to be capable of significantly reducing leaf extension rate. However, the occurrence of such soil water potentials are sufficiently rare in Northern Ireland as to permit prediction of leaf extension rates in perennial ryegrass from simple daily temperature records.
The rate of leaf extension (LER) in swards of perennial and Italian ryegrass was examined in relation to daily mean air temperature. Cultivars studied were an Italian, an Italian-perennial hybrid, a tetraploid perennial and diploid perennial cultivars in three maturity groups. A range of response to temperature was apparent. The Italian, the hybrid and the tetraploid perennial cultivar showed higher LER values than those of the diploid perennials. Amongst perennial cultivars the tetraploid cv. Reveille was shown to have a lower rate of photorespiration than the diploid cv. Gremie. These data are discussed in relation to the use of daily temperature observations in predicting leaf growth.
One strain of Salmonella Brandenburg began causing large numbers of human infections in New Zealand in 1998. We investigated the emergence of this strain using combined notification and laboratory data on human and animal disease and a case-control study. S. Brandenburg infection in humans was characterized by spring peaks and high rates in the southern half of the South Island. This epidemic pattern followed very closely that seen in sheep. The case-control study found that infection was significantly associated with occupational contact with sheep and having a household member who had occupational contact with sheep, during the 3 days prior to illness or interview. We conclude that S. Brandenburg has become established as a zoonotic disease in New Zealand. Preventing infection requires control of the epidemic in sheep through vaccination, changes in farm management practices, and promotion of hand washing and other precautions to protect farmers and their families.
Dispersed community outbreaks of Shigella sonnei have occurred cyclically among traditionally observant Jews in the United States. In February 2000, we investigated a S. sonnei outbreak in one Jewish community in New York City. To determine risk factors for introduction of infection into households, we conducted a cohort study of households to compare risk factors for illness among primary subjects within households and age-matched well siblings. Isolates were subtyped by pulsed-field gel electrophoresis (PFGE). We used a random effects model to assess extra-household vs. intra-household transmission in households with multiple ill household members. Daycare or pre-school attendance [matched odds ratio (mOR) 16·1, P<0·001] and age <60 months (mOR 6·3, P<0·001) were independently associated with index subject illness. Outbreak isolates were closely related by PFGE analysis to the strain previously observed in Jewish community outbreaks. The random effects model strongly indicated that multiple illnesses in a single household are due to secondary transmission. Disease containment efforts should focus on reducing Shigella transmission in childcare settings and within homes.
A new technique is presented that employs luminescence downconversion using an ultrashort gating pulse to enable the characterization of UV light emission from III-nitride semiconductors with subpicosecond temporal resolution. This technique also allows one to measure PL rise times and fast components of multiple decays in the subsequent time evolution of the PL intensity. Comparison of luminescence emission intensity and lifetime in GaN and AlGaN with ∼0.1 Al content grown homoepitaxially on GaN templates with the same quantities measured in heteroepitaxial layers grown on sapphire indicate significant improvement in the homoepitaxial layers due to reduction in dislocation density. Fast (<15 ps) initial decays in the AlGaN are attributed to localization associated with alloy fluctuations and subsequent recombination through gap states.
We present λ7mm multi-epoch and polarization VLBA maps of the gravitational lens PKS 1830–211. The maps suggest that the radio structure of both images evolves rapidly. The offset between the polarized intensity and the total intensity may be used to constrain the magnification matrix.
The enzymic activity and immunoreactivity of rat tissue kallikrein (rK1) secreted at rest by granular duct cells of unstimulated submandibular glands has been compared with that secreted on autonomic nerve stimulation. Although a direct vesicular, constitutive secretory pathway operates for rK1 secretion from granular duct cells of unstimulated and parasympathetically stimulated glands the rK1 was not present in a pro-form and actually showed a greater enzymic activity per unit immunoreactive protein than the granule-derived rK1 in sympathetically evoked saliva. Constitutively secreted rK1 was found to be in a single chain molecular form by reducing SDS gel electrophoresis. In contrast rK1 secreted from the storage granule pool of granular duct cells on sympathetic nerve stimulation was present in much higher amounts and occurred in both one-chain and two-chain forms as revealed by SDS gel electrophoresis under reducing conditions. The lower enzymic potential of rK1 in sympathetically evoked saliva might be accounted for by its conversion to a two-chain form.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.