We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For low-grade intraepithelial neoplasia cases, pharyngolaryngeal lesions equal to or less than 5 mm in size do not generally progress to invasive carcinoma. However, micro-superficial lesions equal to or less than 5 mm that showed rapid growth have been recently encountered. This study aimed to identify the characteristics of preferential progression of lesions equal to or less than 5 mm in size.
Method
Gross findings, endoscopic findings and pathological results of 55 lesions measuring equal to or less than 5 mm in diameter were retrospectively reviewed to identify factors that distinguish squamous cell carcinoma or high-grade intraepithelial neoplasia from low-grade intraepithelial neoplasia or non-atypia lesions.
Results
The overall sensitivity, specificity, accuracy, and positive and negative predictive value of background colouration and intrapapillary capillary loop pattern in differentiation of squamous cell carcinoma or high-grade intraepithelial neoplasia from low-grade intraepithelial neoplasia or non-atypia lesions were all 100 per cent.
Conclusion
Diagnosis based on background colouration and the intrapapillary capillary loop pattern on narrow-band imaging facilitates the pathological examination of lesions measuring equal to or less than 5 mm.
Altered levels of phenylalanine and its metabolites in blood and cerebrospinal fluid have previously been reported in schizophrenia. This study attempted to examine whether phenylalanine kinetics is altered in schizophrenia using the 13C-phenylalanine breath test (13C-PBT).
Methods
Subjects were 20 patients with schizophrenia and the same number of controls. 13C-phenylalanine was administered and then 13CO2 concentration in breath was monitored for 120 minutes. The Δ 13CO2 at each collecting time, the maximal Δ 13CO2 (Cmax), the time to reach Cmax (Tmax), the area under the curve of time course of Δ13CO2 (AUC), the cumulative recovery rate (CRR) at each collecting time of the 13C-PBT were calculated for each subject.
Results
Body weight (BW) and diagnostic status were significant predictors for Cmax. BW, age and diagnostic status were significant predictors for AUC and CRR at 120 minutes (CRR0-120). A repeated measures ANCOVA controlling for age and BW revealed a different pattern of change in CRR over time between the patients and controls and that Δ13CO2 in schizophrenia were lower than that in healthy control at all sampling point during 120 min, with an overall significant differences between healthy control and schizophrenia. The ANCOVA controlling for age and BW, showed that Cmax, AUC and CRR0-120 were significantly lower in schizophrenics than in controls.
Conclusions
Our data indicate the different change of Δ13CO2 and CRR over time and the decreased Cmax, AUC and CRR0-120 of 13C-PBT in schizophrenia patients compared to healthy controls, suggesting the altered phenylalanine kinetics in schizophrenia.
Public health checkups are conducted on 3-year-old children in Japan. However, it is often difficult to detect or provide ongoing support to children with developmental disorders without MR. Therefore we have conducted health checkups on 5 year olds.
Objectives:
The objectives are to describe the results and follow-up of health checkups in 5-year-old children and examine the utility of such checkups.
Aims:
The aims are to make clear the utility of health checkups in 5-year-old children for screening for developmental disorders.
Method:
The subjects were 303 children of 5-year-old that lived in Kanie-cho and participated in health checkups. in the checkups, a child psychiatrist examined the children, and made a provisional diagnosis of a developmental disorder.
Results:
Eighty-two children were provisionally diagnosed as having developmental disorders. the follow-up allowed final diagnosis of developmental disorders (suspect diagnosis included) to be made in 39 children (12.9%), and pinpointed 19 children with ADHD, 9 children with PDD, 9 children with mild MR, and 2 children with motor skills disorder.
All children with PDD had already been informed about the possible occurrence of developmental disorders at 3 years of age. However, most of ADHD, mild MR, and motor function disorder were diagnosed in these children during the checkups at the age of 5 years.
Conclusion:
The health checkup in 5-year-old children is useful not only as a tool to detect developmental disorders that are difficult to diagnose at the age of 3 years but also as an approach in patients lost to follow-up.
Children with Learning Disorders (LD) are susceptible to decreased self-esteem and willingness because of their difficulty learning, which can lead to exacerbation of the learning difficulty in a vicious cycle. Appropriate learning supports may help not only in terms of learning, but also psychologically.
Objectives:
The purpose of this study was to investigate the psychological effect of learning supports for children with LD.
Aims:
The aims are to make clear that psychological changes occur for children by the learning supports.
Methods:
We conducted 10 learning support sessions for 12 children (age 8–11 years) diagnosed as LD. Afterward, we gave a questionnaire on motivation and self-efficacy in learning to the children and their parents, and a questionnaire on positive participation in class to the children's teachers.
Results:
The children's responses showed increased intrinsic motivation with high autonomy, and decreased extrinsic motivation with low autonomy and self-efficacy after supports. the parents’ responses indicated increased self-efficacy and decreased motivation overall after supports, while the teachers’ responses indicated increased positive class participation after supports.
Conclusion:
Parents and teachers see that willingness for learning improve through learning supports, but the children themselves feel decreased efficacy. At the same time, the children came to have more autonomous intrinsic motivation for learning. Both of motivation and willigness increased through learning supports, but conversely the children came to notice their own weaknesses (true abilities), which is thought to have led to decreased self-efficacy. with continuing support improvement of true efficacy may be expected.
The COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) project is a large international collaborative effort to analyze individual-level phenotype data from twins in multiple cohorts from different environments. The main objective is to study factors that modify genetic and environmental variation of height, body mass index (BMI, kg/m2) and size at birth, and additionally to address other research questions such as long-term consequences of birth size. The project started in 2013 and is open to all twin projects in the world having height and weight measures on twins with information on zygosity. Thus far, 54 twin projects from 24 countries have provided individual-level data. The CODATwins database includes 489,981 twin individuals (228,635 complete twin pairs). Since many twin cohorts have collected longitudinal data, there is a total of 1,049,785 height and weight observations. For many cohorts, we also have information on birth weight and length, own smoking behavior and own or parental education. We found that the heritability estimates of height and BMI systematically changed from infancy to old age. Remarkably, only minor differences in the heritability estimates were found across cultural–geographic regions, measurement time and birth cohort for height and BMI. In addition to genetic epidemiological studies, we looked at associations of height and BMI with education, birth weight and smoking status. Within-family analyses examined differences within same-sex and opposite-sex dizygotic twins in birth size and later development. The CODATwins project demonstrates the feasibility and value of international collaboration to address gene-by-exposure interactions that require large sample sizes and address the effects of different exposures across time, geographical regions and socioeconomic status.
Sectored vesuvianite showing optically triclinic properties was studied by X-ray and P-FTIR analyses, and the origins of the internal optical texture are discussed. A monoclinic refinement (space group P2/n) suggests that site occupancies are slightly different among the Al(2) series, though the OH– dipole is randomly oriented in all sectors. A relationship between the surface and internal texture suggests that these sectoral structures were produced during crystal growth, not by phase transitions.
Edingtonite and yugawaralite showing sectoral textures were studied by polarized optical microscopy and X-ray analysis. In edingtonite, the m{110} sector (2Vα = 22°) is optically triclinic and the c{001} sector (2Vα = 52°) is orthorhombic. In yugawaralite, the k{011} sector is optically monoclinic, whereas the v{120} sector is triclinic. Their crystal structures were determined. The results of refinement showed that the space groups of the k{011} (Rw = 4.5%) and v{120} (Rw = 5.1%) growth sectors are monoclinic Pc and triclinic P1, respectively. In the v{120} sector, several interatomic distances, bond angles and site occupancies are different with respect to a symmetrical plane of the structure, and therefore the monoclinic c glide is extinct. Thus, the X-ray symmetry correlates with the optical one. From the relationship between the surface and internal texture, the symmetry and sector can be explained by cation (Al/Si) ordering during non-equilibrium crystal growth.
We initiated a long-term and highly frequent monitoring project toward 442 methanol masers at 6.7 GHz (Dec >−30 deg) using the Hitachi 32-m radio telescope in December 2012. The observations have been carried out daily, monitoring a spectrum of each source with intervals of 9–10 days. In September 2015, the number of the target sources and intervals were redesigned into 143 and 4–5 days, respectively. This monitoring provides us complete information on how many sources show periodic flux variations in high-mass star-forming regions, which have been detected in 20 sources with periods of 29.5–668 days so far (e.g., Goedhart et al. 2004). We have already obtained new detections of periodic flux variations in 31 methanol sources with periods of 22–409 days. These periodic flux variations must be a unique tool to investigate high-mass protostars themselves and their circumstellar structure on a very tiny spatial scale of 0.1–1 au.
The overview of the recent results for discovery and investigations of a very exotic phenomenon – optical mirage in the X-ray spectral range – is presented. It was found that the mirage could be created in the form of coherent virtual point source, emerging in the vicinity of the second plasma in two-stage oscillator-amplifier X-ray laser. The X-ray source-mirage, rigidly phased with the initial radiation of generator, occurs only when amplification takes place in the amplifier plasma and leads to the appearance of the interference pattern in the form of concentric rings in the spatial profile of the output X-ray laser beam. The equation describing the emergence of X-ray mirage was found, numerical solution of which shows that its formation is similar to that of the optical mirages observed at propagation of light rays through an inhomogeneously heated air. Obtained results have already demonstrated novel comprehension into the physical nature of amplification of X-ray radiation, opening additional opportunities for X-ray interferometry, holography, and other applications, which require multiple rigidly phased sources of coherent radiation.
Major depressive disorder (MDD) is moderately heritable, however genome-wide association studies (GWAS) for MDD, as well as for related continuous outcomes, have not shown consistent results. Attempts to elucidate the genetic basis of MDD may be hindered by heterogeneity in diagnosis. The Center for Epidemiological Studies Depression (CES-D) scale provides a widely used tool for measuring depressive symptoms clustered in four different domains which can be combined together into a total score but also can be analysed as separate symptom domains.
Method
We performed a meta-analysis of GWAS of the CES-D symptom clusters. We recruited 12 cohorts with the 20- or 10-item CES-D scale (32 528 persons).
Results
One single nucleotide polymorphism (SNP), rs713224, located near the brain-expressed melatonin receptor (MTNR1A) gene, was associated with the somatic complaints domain of depression symptoms, with borderline genome-wide significance (pdiscovery = 3.82 × 10−8). The SNP was analysed in an additional five cohorts comprising the replication sample (6813 persons). However, the association was not consistent among the replication sample (pdiscovery+replication = 1.10 × 10−6) with evidence of heterogeneity.
Conclusions
Despite the effort to harmonize the phenotypes across cohorts and participants, our study is still underpowered to detect consistent association for depression, even by means of symptom classification. On the contrary, the SNP-based heritability and co-heritability estimation results suggest that a very minor part of the variation could be captured by GWAS, explaining the reason of sparse findings.
The transport of relativistic electron beam in compressed cylindrical targets was studied from a numerical and experimental point of view. In the experiment, cylindrical targets were imploded using the Gekko XII laser facility of the Institute of Laser Engineering. Then the fast electron beam was created by shooting the LFEX laser beam. The penetration of fast electrons was studied by observing Kα emission from tracer layers in the target.
A fully coherent free electron laser (FEL) seeded with a higher-order harmonic (HH) pulse from high-order harmonic generation (HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly, we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling (EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was $20~{\rm\mu}\text{J}$ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 eV and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation (HGHG) at the energy-upgraded SPring-8 Compact SASE Source (SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.
Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging has been used to detect alterations in the composition of inner-ear fluid. This study investigated the association between hearing level and the signal intensity of pre- and post-contrast three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging in patients with sudden-onset sensorineural hearing loss.
Method:
Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging was performed in 18 patients with sudden-onset sensorineural hearing loss: 12 patients with mild-to-moderate sensorineural hearing loss (baseline hearing levels of 60 dB or less) and 6 patients with severe-to-profound sensorineural hearing loss (baseline hearing levels of more than 60 dB).
Results:
High-intensity signals in the inner ear were observed in two of the six patients (33 per cent) with severe-to-profound sensorineural hearing loss, but not in those with mild-to-moderate sensorineural hearing loss (mid-p test, p = 0.049). These signals were observed on magnetic resonance imaging scans 6 or 18 days after sensorineural hearing loss onset.
Conclusion:
The results indicate that three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging is not a useful tool for detecting inner-ear abnormalities in patients with mild sensorineural hearing loss.
HYPER-I (High Density Plasma Experiment-I) is a linear device that combines a wide operation range of plasma production with flexible diagnostics. The plasmas are produced by the electron cyclotron resonance (ECR) heating with parallel injection of right-handed circularly polarized microwaves of 2.45 GHz from the high-field side. The maximum attainable electron density is more than two orders of magnitude higher than the cutoff density of ordinary waves. Spontaneous formation of a variety of large-scale flow structures, or vortices, has been observed in the HYPER-I plasmas. Flow-velocity field measurements using directional Langmuir probes (DLPs) and laser-induced fluorescence (LIF) method have clarified the physical processes behind such vortex formations. Recently, a new intermittent behavior of local electron temperature has also been observed. Statistical analysis of the floating potential changes has revealed that the phenomenon is characterized by a stationary Poisson process.
The energy transfer by stimulated Brillouin backscatter from a long pump pulse (15 ps) to a short seed pulse (1 ps) has been investigated in a proof-of-principle demonstration experiment. The two pulses were both amplified in different beamlines of a Nd:glass laser system, had a central wavelength of 1054 nm and a spectral bandwidth of 2 nm, and crossed each other in an underdense plasma in a counter-propagating geometry, off-set by $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}10^\circ $. It is shown that the energy transfer and the wavelength of the generated Brillouin peak depend on the plasma density, the intensity of the laser pulses, and the competition between two-plasmon decay and stimulated Raman scatter instabilities. The highest obtained energy transfer from pump to probe pulse is 2.5%, at a plasma density of $0.17 n_{cr}$, and this energy transfer increases significantly with plasma density. Therefore, our results suggest that much higher efficiencies can be obtained when higher densities (above $0.25 n_{cr}$) are used.
The HYPER-II device has been constructed in Kyushu University to investigate the flow structure formation in an ion-unmagnetized plasma, which is an intermediate state of plasma and consists of unmagnetized ions and magnetized electrons. High density plasmas are produced by electron cyclotron resonance heating, and the flow field structure in an inhomogeneous magnetic field is investigated with a directional Langmuir probe method and a laser-induced fluorescence method. The experimental setup has been completed and the diagnostic systems have been installed to start the experiments. A set of coaxial electrodes will be introduced to control the azimuthal plasma rotation, and the effect of plasma rotation to generation of rectilinear flow structure will be studied. The HYPER-II experiments will clarify the overall flow structure in the inhomogeneous magnetic field and contribute to understanding characteristic feature of the intermediate state of plasma.
In this paper, we give arguments that there are two types of coronal mass ejection (CME).The first type of CME discussed here is the ‘loop-type’, whose occurrence is related to an arcade flare somewhere between the footpoints. It was found that there were pre-event magnetic connections between the flare location and the locations of the footpoints of a CME of this type, and that these connections disappeared after the event. This suggests that the footpoints of loop-type CMEs are special prescribed points, and this was verified by the observation that the footpoints do not move in this type of CME.
The other type of CME is the ‘bubble-type’, which is associated with the flare blast from explosive flares. We confirmed the association of this type of CME with the so-called EIT (Extreme Ultra-violet Imaging Telescope) waves, but the velocity of expansion of the bubble is twice or more greater than that of the EIT waves depending on events. Although EIT waves were widely considered to be Moreton waves viewed by SoHO/EIT in the solar activity minimum period, recent simultaneous observations of both have revealed that the EIT wave is something different from the Moreton wave, and propagates separately with a velocity less than half that of a Moreton wave.We therefore propose a new overall picture: the bubble-type CMEs are the flare-produced MHD blast waves themselves, whose skirt is identified as a Moreton wave. EIT waves may be interpreted as follows: the slow-mode gas motions from the source cause secondary longwavelength fast-mode waves which are trapped in the “waveguide” in the low corona. The secondary long-wavelength wave in the fast-mode, which is trapped in the low corona, has a slower propagation velocity due to the nature of the waves trapped in a “waveguide”. This trapped wave induces slow-mode motions of the gas through a mode-coupling process in the high chromosphere, where the propagation velocities of the fastand slow-mode waves match.
Three-dimensional MHD simulations for these two types of CME are in progress, and are previewed in this paper.
The near-infrared (NIR) spectral range (2–5 μm) contains a number of interesting features for the study of the interstellar medium. In particular, the aromatic and aliphatic components in carbonaceous dust can be investigated most efficiently with the NIR spectroscopy. We analyze NIR spectra of the diffuse Galactic emission taken with the Infrared Camera onboard AKARI and find that the aliphatic to aromatic emission band ratio decreases toward the ionized gas, which suggests processing of the band carriers in the ionized region.