We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To determine risk factors for carbapenemase-producing organisms (CPOs) and to determine the prognostic impact of CPOs.
Design:
A retrospective matched case–control study.
Patients:
Inpatients across Scotland in 2010–2016 were included. Patients with a CPO were matched with 2 control groups by hospital, admission date, specimen type, and bacteria. One group comprised patients either infected or colonized with a non-CPO and the other group were general inpatients.
Methods:
Conditional logistic regression models were used to identify risk factors for CPO infection and colonization, respectively. Mortality rates and length of postisolation hospitalization were compared between CPO and non-CPO patients.
Results:
In total, 70 CPO infection cases (with 210 general inpatient controls and 121 non-CPO controls) and 34 CPO colonization cases (with 102 general inpatient controls and 60 non-CPO controls) were identified. Risk factors for CPO infection versus general inpatients were prior hospital stay (adjusted odds ratio [aOR], 4.05; 95% confidence interval [CI], 1.52–10.78; P = .005), longer hospitalization (aOR, 1.07; 95% CI, 1.04–1.10; P < .001), longer intensive care unit (ICU) stay (aOR, 1.41; 95% CI, 1.01–1.98; P = .045), and immunodeficiency (aOR, 3.68; 95% CI, 1.16–11.66; P = .027). Risk factors for CPO colonization were prior high-dependency unit (HDU) stay (aOR, 11.46; 95% CI, 1.27–103.09; P = .030) and endocrine, nutritional, and metabolic (ENM) diseases (aOR, 3.41; 95% CI, 1.02–11.33; P = .046). Risk factors for CPO infection versus non-CPO infection were prolonged hospitalization (aOR, 1.02; 95% CI, 1.00–1.03; P = .038) and HDU stay (aOR, 1.13; 95% CI, 1.02–1.26; P = .024). No differences in mortality rates were detected between CPO and non-CPO patients. CPO infection was associated with longer hospital stay than non-CPO infection (P = .041).
Conclusions:
A history of (prolonged) hospitalization, prolonged ICU or HDU stay; ENM diseases; and being immunocompromised increased risk for CPO. CPO infection was not associated with increased mortality but was associated with prolonged hospital stay.
This contribution discusses results obtained from 3-D neutron diffraction and 2-D fabric analyser in situ deformation experiments on laboratory-prepared polycrystalline deuterated ice and ice containing a second phase. The two-phase samples used in the experiments are composed of an ice matrix with (1) air bubbles, (2) rigid, rhombohedral-shaped calcite and (3) rheologically soft, platy graphite. Samples were tested at 10°C below the melting point of deuterated ice at ambient pressures, and two strain rates of 1 × 10−5 s−1 (fast) and 2.5 × 10−6 s−1 (medium). Nature and distribution of the second phase controlled the rheological behaviour of the ice by pinning grain boundary migration. Peak stresses increased with the presence of second-phase particles and during fast strain rate cycles. Ice-only samples exhibit well-developed crystallographic preferred orientations (CPOs) and dynamically recrystallized microstructures, typifying deformation via dislocation creep, where the CPO intensity is influenced in part by the strain rate. CPOs are accompanied by a concentration of [c]-axes in cones about the compression axis, coinciding with increasing activity of prismatic-<a> slip activity. Ice with second phases, deformed in a relatively slower strain rate regime, exhibit greater grain boundary migration and stronger CPO intensities than samples deformed at higher strain rates or strain rate cycles.
Glioblastomas are the most frequent and aggressive primary brain tumor in adults and despite recent therapeutic advances, they are resistant to treatment. Increasing malignancy of gliomas correlates with an increase in cellularity and a poorly organized tumor vasculature, leading to insufficient blood supply, hypoxic areas, and ultimately to the formation of necrosis. Hypoxia induces direct or indirect changes in the biology of solid tumor and their microenvironment through the activation of HIF transcription factors, leading to increased aggressiveness and tumor resistance to therapy. Not much is known about the epigenetic alterations induced by hypoxia and how they could alter tumor biology. In the present study, we have utilized PIMO as a specific marker of hypoxia in glioblastoma patients, treated with PIMO preoperatively. We have estimated PIMO positivity in each tumor (5-45%) and determined that it positively correlates with the hypoxia marker CA IX (r=0.57). In addition, 10 surgical PIMO cases were dissociated, immune labeled using PIMO antibody, followed by DNA isolation and methylation profiling. Our analysis of differentially top 4000 differentially methylated probes suggests that PIMO-positive (hypoxic) cells are differentially methylated compared to the PIMO-negative cells and these changes are associated with genes involved in hypoxic cellular response. We will validate these findings in additional glioblastoma cases and assess the mechanism of these epigenetic alterations in vitro in glioma stem cell culture conditions and upon exposure of the cells hypoxic conditions.
Weed population models can serve as a framework to organize weed biology information and to develop weed control strategies. Models help to identify information gaps, to set research priorities, to develop hypotheses pertinent to weed population regulation, and to suggest control strategies. A population simulation model of leafy spurge (Euphorbia esula L. # EPHES) was used to demonstrate the applicability of population models to weed science. Sensitivity analysis of an existing leafy spurge model indicated that transition from basal buds to vegetative shoots, survival of vegetative shoots, and survival of basal buds over winter were important transition parameters influencing population growth of this weed species. Possible mechanisms (intraspecific competition and environmental factors) that influence the transition from basal buds to vegetative shoots were shown. Intraspecific density effects on basal bud transition and production were included to show model refinement and second-generation model development. Four control strategies were simulated and were compared to field studies to show the predictive and management potential of the modeling approach. Simulations of population response to foliage feeding herbivores was highly correlated (r = 0.98) with field data for sheep grazing on leafy spurge. Simulation of picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) applied to leafy spurge also was correlated (r = 0.97) with field results.
Corn and soybean growers in Illinois, Indiana, Iowa, Mississippi, Nebraska, and North Carolina, as well as cotton growers in Mississippi and North Carolina, were surveyed about their views on changes in problematic weeds and weed pressure in cropping systems based on a glyphosate-resistant (GR) crop. No growers using a GR cropping system for more than 5 yr reported heavy weed pressure. Over all cropping systems investigated (continuous GR soybean, continuous GR cotton, GR corn/GR soybean, GR soybean/non-GR crop, and GR corn/non-GR crop), 0 to 7% of survey respondents reported greater weed pressure after implementing rotations using GR crops, whereas 31 to 57% felt weed pressure was similar and 36 to 70% indicated that weed pressure was less. Pigweed, morningglory, johnsongrass, ragweed, foxtail, and velvetleaf were mentioned as their most problematic weeds, depending on the state and cropping system. Systems using GR crops improved weed management compared with the technologies used before the adoption of GR crops. However, the long-term success of managing problematic weeds in GR cropping systems will require the development of multifaceted integrated weed management programs that include glyphosate as well as other weed management tactics.
Field experiments were conducted at five sites in Nebraska in 2000 and 2001 to determine the effect of planting depth and isoxaflutole rate on the response of an isoxaflutole-sensitive corn hybrid, ‘Pioneer 33-G’ across variable environments. Corn was planted at depths of 2.5 and 5.0 cm, and isoxaflutole was applied PRE at the recommended (1×) and twice the recommended (2×) rate. The effects of planting depth and herbicide rate on injury varied considerably across site–years. When injury was evident, it was generally greater at the high rate of isoxaflutole (2×) and at the shallow planting depth (2.5 cm). In most site–years, corn recovered from early season injury, and yields were not reduced, except at Scottsbluff, NE, and North Platte, NE, where soils were lower in organic matter and higher in pH. Isoxaflutole rates should be carefully selected for soils with low organic matter and high pH.
Kochia is a troublesome weed in the western Great Plains and many accessions have evolved resistance to one or more herbicides. Dicamba-resistant soybean is being developed to provide an additional herbicide mechanism of action for POST weed control in soybean. The objective of this study was to evaluate variation in response to dicamba among kochia accessions collected from across Nebraska. Kochia plants were grown in a greenhouse and treated when they were 8 to 12 cm tall. A discriminating experiment with a single dose of 420 g ae ha−1 of dicamba was conducted on 67 accessions collected in Nebraska in 2010. Visual injury estimates were recorded at 21 d after treatment (DAT) and accessions were ranked from least to most susceptible. Four accessions representing two of the most and least susceptible accessions from this screening were subjected to dose-response experiments using dicamba. At 28 DAT, visible injury estimates were made and plants were harvested to determine dry weight. An 18-fold difference in dicamba dose was necessary to achieve 90% injury (I90) between the least (accession 11) and most susceptible accessions. Approximately 3,500 g ha−1 of dicamba was required in accession 11 to reach a 50% dry weight reduction (GR50). There was less than twofold variation among the three more susceptible accessions for both the I90 and GR90 parameters, suggesting that most kochia accessions will be similarly susceptible to dicamba. At 110 DAT, accession 11 had plants that survived doses of 35,840 g ha−1, and produced seed at doses of 17,420 g ha−1. The identification of one resistant accession among the 67 accessions screened, and the fact that dicamba doses greater than 560 g ha−1 were required to achieve GR80 for all accessions suggest that repeated use of dicamba for weed control in fields where kochia is present may quickly result in the evolution of dicamba-resistant kochia populations.
Field experiments were conducted across the north-central United States to determine the benefits of various weed control strategies in corn. Weed control, corn yield, and economic return increased when a preemergence (PRE) broad-spectrum herbicide was followed by (fb) postemergence (POST) herbicides. Weed control decisions based on field scouting after a PRE broad-spectrum herbicide application increased weed control and economic return. Application of a PRE grass herbicide fb a POST herbicide based on field scouting resulted in less control of velvetleaf and morningglory species, corn yield, and economic return compared with a PRE broad-spectrum herbicide application fb scouting. Cultivation after a PRE broad-spectrum herbicide application increased weed control and corn yield compared with the herbicide applied alone, but economic return was not increased. An early-postemergence herbicide application fb cultivation resulted in the highest level of broadleaf weed control, the highest corn yield, and the greatest economic return compared with all other strategies. Weed control based on scouting proved to be useful in reducing the effect of weed escapes on corn yield and increased economic return compared with PRE herbicide application alone. However, economic return was not greater than the PRE fb planned POST or total POST strategies.