We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inappropriate diagnosis and treatment of urinary tract infections (UTIs) contribute to antibiotic overuse. The Inappropriate Diagnosis of UTI (ID-UTI) measure uses a standard definition of asymptomatic bacteriuria (ASB) and was validated in large hospitals. Critical access hospitals (CAHs) have different resources which may make ASB stewardship challenging. To address this inequity, we adapted the ID-UTI metric for use in CAHs and assessed the adapted measure’s feasibility, validity, and reliability.
Design:
Retrospective observational study
Participants:
10 CAHs
Methods:
From October 2022 to July 2023, CAHs submitted clinical information for adults admitted or discharged from the emergency department who received antibiotics for a positive urine culture. Feasibility of case submission was assessed as the number of CAHs achieving the goal of 59 cases. Validity (sensitivity/specificity) and reliability of the ID-UTI definition were assessed by dual-physician review of a random sample of submitted cases.
Results:
Among 10 CAHs able to participate throughout the study period, only 40% (4/10) submitted >59 cases (goal); an additional 3 submitted >35 cases (secondary goal). Per the ID-UTI metric, 28% (16/58) of cases were ASB. Compared to physician review, the ID-UTI metric had 100% specificity (ie all cases called ASB were ASB on clinical review) but poor sensitivity (48.5%; ie did not identify all ASB cases). Measure reliability was high (93% [54/58] agreement).
Conclusions:
Similar to measure performance in non-CAHs, the ID-UTI measure had high reliability and specificity—all cases identified as ASB were considered ASB—but poor sensitivity. Though feasible for a subset of CAHs, barriers remain.
We present radio observations of the galaxy cluster Abell S1136 at 888 MHz, using the Australian Square Kilometre Array Pathfinder radio telescope, as part of the Evolutionary Map of the Universe Early Science program. We compare these findings with data from the Murchison Widefield Array, XMM-Newton, the Wide-field Infrared Survey Explorer, the Digitised Sky Survey, and the Australia Telescope Compact Array. Our analysis shows the X-ray and radio emission in Abell S1136 are closely aligned and centered on the Brightest Cluster Galaxy, while the X-ray temperature profile shows a relaxed cluster with no evidence of a cool core. We find that the diffuse radio emission in the centre of the cluster shows more structure than seen in previous low-resolution observations of this source, which appeared formerly as an amorphous radio blob, similar in appearance to a radio halo; our observations show the diffuse emission in the Abell S1136 galaxy cluster contains three narrow filamentary structures visible at 888 MHz, between $\sim$80 and 140 kpc in length; however, the properties of the diffuse emission do not fully match that of a radio (mini-)halo or (fossil) tailed radio source.
We present a comparison between the performance of a selection of source finders (SFs) using a new software tool called Hydra. The companion paper, Paper I, introduced the Hydra tool and demonstrated its performance using simulated data. Here we apply Hydra to assess the performance of different source finders by analysing real observational data taken from the Evolutionary Map of the Universe (EMU) Pilot Survey. EMU is a wide-field radio continuum survey whose primary goal is to make a deep ($20\mu$Jy/beam RMS noise), intermediate angular resolution ($15^{\prime\prime}$), 1 GHz survey of the entire sky south of $+30^{\circ}$ declination, and expecting to detect and catalogue up to 40 million sources. With the main EMU survey it is highly desirable to understand the performance of radio image SF software and to identify an approach that optimises source detection capabilities. Hydra has been developed to refine this process, as well as to deliver a range of metrics and source finding data products from multiple SFs. We present the performance of the five SFs tested here in terms of their completeness and reliability statistics, their flux density and source size measurements, and an exploration of case studies to highlight finder-specific limitations.
The latest generation of radio surveys are now producing sky survey images containing many millions of radio sources. In this context it is highly desirable to understand the performance of radio image source finder (SF) software and to identify an approach that optimises source detection capabilities. We have created Hydra to be an extensible multi-SF and cataloguing tool that can be used to compare and evaluate different SFs. Hydra, which currently includes the SFs Aegean, Caesar, ProFound, PyBDSF, and Selavy, provides for the addition of new SFs through containerisation and configuration files. The SF input RMS noise and island parameters are optimised to a 90% ‘percentage real detections’ threshold (calculated from the difference between detections in the real and inverted images), to enable comparison between SFs. Hydra provides completeness and reliability diagnostics through observed-deep ($\mathcal{D}$) and generated-shallow ($\mathcal{S}$) images, as well as other statistics. In addition, it has a visual inspection tool for comparing residual images through various selection filters, such as S/N bins in completeness or reliability. The tool allows the user to easily compare and evaluate different SFs in order to choose their desired SF, or a combination thereof. This paper is part one of a two part series. In this paper we introduce the Hydra software suite and validate its $\mathcal{D/S}$ metrics using simulated data. The companion paper demonstrates the utility of Hydra by comparing the performance of SFs using both simulated and real images.
Alterations in heart rate (HR) may provide new information about physiological signatures of depression severity. This 2-year study in individuals with a history of recurrent major depressive disorder (MDD) explored the intra-individual variations in HR parameters and their relationship with depression severity.
Methods
Data from 510 participants (Number of observations of the HR parameters = 6666) were collected from three centres in the Netherlands, Spain, and the UK, as a part of the remote assessment of disease and relapse-MDD study. We analysed the relationship between depression severity, assessed every 2 weeks with the Patient Health Questionnaire-8, with HR parameters in the week before the assessment, such as HR features during all day, resting periods during the day and at night, and activity periods during the day evaluated with a wrist-worn Fitbit device. Linear mixed models were used with random intercepts for participants and countries. Covariates included in the models were age, sex, BMI, smoking and alcohol consumption, antidepressant use and co-morbidities with other medical health conditions.
Results
Decreases in HR variation during resting periods during the day were related with an increased severity of depression both in univariate and multivariate analyses. Mean HR during resting at night was higher in participants with more severe depressive symptoms.
Conclusions
Our findings demonstrate that alterations in resting HR during all day and night are associated with depression severity. These findings may provide an early warning of worsening depression symptoms which could allow clinicians to take responsive treatment measures promptly.
Cognitive symptoms are common during and following episodes of depression. Little is known about the persistence of self-reported and performance-based cognition with depression and functional outcomes.
Methods
This is a secondary analysis of a prospective naturalistic observational clinical cohort study of individuals with recurrent major depressive disorder (MDD; N = 623). Participants completed app-based self-reported and performance-based cognitive function assessments alongside validated measures of depression, functional disability, and self-esteem every 3 months. Participants were followed-up for a maximum of 2-years. Multilevel hierarchically nested modelling was employed to explore between- and within-participant variation over time to identify whether persistent cognitive difficulties are related to levels of depression and functional impairment during follow-up.
Results
508 individuals (81.5%) provided data (mean age: 46.6, s.d.: 15.6; 76.2% female). Increasing persistence of self-reported cognitive difficulty was associated with higher levels of depression and functional impairment throughout the follow-up. In comparison to low persistence of objective cognitive difficulty (<25% of timepoints), those with high persistence (>75% of timepoints) reported significantly higher levels of depression (B = 5.17, s.e. = 2.21, p = 0.019) and functional impairment (B = 4.82, s.e. = 1.79, p = 0.002) over time. Examination of the individual cognitive modules shows that persistently impaired executive function is associated with worse functioning, and poor processing speed is particularly important for worsened depressive symptoms.
Conclusions
We replicated previous findings of greater persistence of cognitive difficulty with increasing severity of depression and further demonstrate that these cognitive difficulties are associated with pervasive functional disability. Difficulties with cognition may be an indicator and target for further treatment input.
Higher thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population (Boedhoe et al. 2017, Weeland et al. 2021a). Functionally distinct thalamic nuclei are an integral part of OCD-relevant brain circuitry.
Objectives
We aimed to study the thalamic nuclei volume in relation to subclinical and clinical OCD across different age ranges. Understanding the role of thalamic nuclei and their associated circuits in pediatric OCD could lead towards treatment strategies specifically targeting these circuits.
Methods
We studied the relationship between thalamic nuclei and obsessive-compulsive symptoms (OCS) in a large sample of school-aged children from the Generation R Study (N = 2500) (Weeland et al. 2021b). Using the data from the ENIGMA-OCD working group we conducted mega-analyses to study thalamic subregional volume in OCD across the lifespan in 2,649 OCD patients and 2,774 healthy controls across 29 sites (Weeland et al. 2021c). Thalamic nuclei were grouped into five subregions: anterior, ventral, intralaminar/medial, lateral and pulvinar (Figure 1).
Results
Both children with subclinical and clinical OCD compared with controls show increased volume across multiple thalamic subregions. Adult OCD patients have decreased volume across all subregions (Figure 2), which was mostly driven by medicated and adult-onset patients.
Conclusions
Our results suggests that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status.
Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an exciting opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks.
Objectives
To describe the amount of data collected during a multimodal longitudinal RMT study, in an MDD population.
Methods
RADAR-MDD is a multi-centre, prospective observational cohort study. People with a history of MDD were provided with a wrist-worn wearable, and several apps designed to: a) collect data from smartphone sensors; and b) deliver questionnaires, speech tasks and cognitive assessments and followed-up for a maximum of 2 years.
Results
A total of 623 individuals with a history of MDD were enrolled in the study with 80% completion rates for primary outcome assessments across all timepoints. 79.8% of people participated for the maximum amount of time available and 20.2% withdrew prematurely. Data availability across all RMT data types varied depending on the source of data and the participant-burden for each data type. We found no evidence of an association between the severity of depression symptoms at baseline and the availability of data. 110 participants had > 50% data available across all data types, and thus able to contribute to multiparametric analyses.
Conclusions
RADAR-MDD is the largest multimodal RMT study in the field of mental health. Here, we have shown that collecting RMT data from a clinical population is feasible.
As refugees and asylum seekers are at high risk of developing mental disorders, we assessed the effectiveness of Self-Help Plus (SH + ), a psychological intervention developed by the World Health Organization, in reducing the risk of developing any mental disorders at 12-month follow-up in refugees and asylum seekers resettled in Western Europe.
Methods
Refugees and asylum seekers with psychological distress (General Health Questionnaire-12 ⩾ 3) but without a mental disorder according to the Mini International Neuropsychiatric Interview (M.I.N.I.) were randomised to either SH + or enhanced treatment as usual (ETAU). The frequency of mental disorders at 12 months was measured with the M.I.N.I., while secondary outcomes included self-identified problems, psychological symptoms and other outcomes.
Results
Of 459 participants randomly assigned to SH + or ETAU, 246 accepted to be interviewed at 12 months. No difference in the frequency of any mental disorders was found (relative risk [RR] = 0.841; 95% confidence interval [CI] 0.389–1.819; p-value = 0.659). In the per protocol (PP) population, that is in participants attending at least three group-based sessions, SH + almost halved the frequency of mental disorders at 12 months compared to ETAU, however so few participants and events contributed to this analysis that it yielded a non-significant result (RR = 0.528; 95% CI 0.180–1.544; p-value = 0.230). SH + was associated with improvements at 12 months in psychological distress (p-value = 0.004), depressive symptoms (p-value = 0.011) and wellbeing (p-value = 0.001).
Conclusions
The present study failed to show any long-term preventative effect of SH + in refugees and asylum seekers resettled in Western European countries. Analysis of the PP population and of secondary outcomes provided signals of a potential effect of SH + in the long-term, which would suggest the value of exploring the effects of booster sessions and strategies to increase SH + adherence.
We describe the scientific goals and survey design of the First Large Absorption Survey in H i (FLASH), a wide field survey for 21-cm line absorption in neutral atomic hydrogen (H i) at intermediate cosmological redshifts. FLASH will be carried out with the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope and is planned to cover the sky south of $\delta \approx +40\,\deg$ at frequencies between 711.5 and 999.5 MHz. At redshifts between $z = 0.4$ and $1.0$ (look-back times of 4 – 8 Gyr), the H i content of the Universe has been poorly explored due to the difficulty of carrying out radio surveys for faint 21-cm line emission and, at ultra-violet wavelengths, space-borne searches for Damped Lyman-$\alpha$ absorption in quasar spectra. The ASKAP wide field of view and large spectral bandwidth, in combination with a radio-quiet site, will enable a search for absorption lines in the radio spectra of bright continuum sources over 80% of the sky. This survey is expected to detect at least several hundred intervening 21-cm absorbers and will produce an H i-absorption-selected catalogue of galaxies rich in cool, star-forming gas, some of which may be concealed from optical surveys. Likewise, at least several hundred associated 21-cm absorbers are expected to be detected within the host galaxies of radio sources at $0.4 < z < 1.0$, providing valuable kinematical information for models of gas accretion and jet-driven feedback in radio-loud active galactic nuclei. FLASH will also detect OH 18-cm absorbers in diffuse molecular gas, megamaser OH emission, radio recombination lines, and stacked H i emission.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers $270 \,\mathrm{deg}^2$ of an area covered by the Dark Energy Survey, reaching a depth of 25–30 $\mu\mathrm{Jy\ beam}^{-1}$ rms at a spatial resolution of $\sim$11–18 arcsec, resulting in a catalogue of $\sim$220 000 sources, of which $\sim$180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76–227 MHz of the entire southern sky (Declination $<\!{+}30^{\circ}$) with an angular resolution of ${\approx}2$ arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1 590 local (median $z \approx 0.064$) radio sources with $S_{200\,\mathrm{MHz}} > 55$ mJy across an area of ${\approx}16\,700\,\mathrm{deg}^{2}$. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73% are fuelled by an active galactic nucleus (AGN) and 27% by star formation. We present the local radio luminosity function for AGN and star-forming (SF) galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and ${\sim}1$ GHz. For the AGN, the median spectral index between 200 MHz and ${\sim}1$ GHz, $\alpha_{\mathrm{high}}$, is $-0.600 \pm 0.010$ (where $S \propto \nu^{\alpha}$) and the median spectral index within the GLEAM band, $\alpha_{\mathrm{low}}$, is $-0.704 \pm 0.011$. For the SF galaxies, the median value of $\alpha_{\mathrm{high}}$ is $-0.650 \pm 0.010$ and the median value of $\alpha_{\mathrm{low}}$ is $-0.596 \pm 0.015$. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4% of local radio AGN have ultra-steep radio spectra at low frequencies ($\alpha_{\mathrm{low}} < -1.2$). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
We present the South Galactic Pole (SGP) data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. These data combine both years of GLEAM observations at 72–231 MHz conducted with the Murchison Widefield Array (MWA) and cover an area of 5 113$\mathrm{deg}^{2}$ centred on the SGP at $20^{\mathrm{h}} 40^{\mathrm{m}} < \mathrm{RA} < 05^{\mathrm{h}} 04^{\mathrm{m}}$ and $-48^{\circ}< \mathrm{Dec} < -2^{\circ} $. At 216 MHz, the typical rms noise is ${\approx}5$ mJy beam–1 and the angular resolution ${\approx}2$ arcmin. The source catalogue contains a total of 108 851 components above $5\sigma$, of which 77% have measured spectral indices between 72 and 231 MHz. Improvements to the data reduction in this release include the use of the GLEAM Extragalactic catalogue as a sky model to calibrate the data, a more efficient and automated algorithm to deconvolve the snapshot images, and a more accurate primary beam model to correct the flux scale. This data release enables more sensitive large-scale studies of extragalactic source populations as well as spectral variability studies on a one-year timescale.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
We have found a class of circular radio objects in the Evolutionary Map of the Universe Pilot Survey, using the Australian Square Kilometre Array Pathfinder telescope. The objects appear in radio images as circular edge-brightened discs, about one arcmin diameter, that are unlike other objects previously reported in the literature. We explore several possible mechanisms that might cause these objects, but none seems to be a compelling explanation.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
Effective management of uncertainty can lead to better, more informed decisions. However, many decision makers and their advisers do not always face up to uncertainty, in part because there is little constructive guidance or tools available to help. This paper outlines six Uncertainty Principles to manage uncertainty.
Face up to uncertainty
Deconstruct the problem
Don’t be fooled (un/intentional biases)
Models can be helpful, but also dangerous
Think about adaptability and resilience
Bring people with you
These were arrived at following extensive discussions and literature reviews over a 5-year period. While this is an important topic for actuaries, the intended audience is any decision maker or advisor in any sector (public or private).