We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the dynamics of a cavitation bubble near rigid surfaces decorated with a single gas-entrapping hole to understand the competition between the attraction of the rigid and the repulsion of the free boundary. The dynamics of laser-induced bubbles near this gas-entrapping hole is studied as a function of the stand-off distance and diameter of the hole. Two kinds of toroidal collapses are observed that are the result of the collision of a wide microjet with the bubble wall. The bubble centroid displacement and the strength of the microjet are compared with the anisotropy parameter $\zeta$, which is derived from a Kelvin impulse analysis. We find that the non-dimensional displacement $\delta$ scales with $\zeta$.
Rhopalosiphum padi is an important grain pest, causing severe losses during crop production. As a systemic insecticide, flonicamid can control piercing-sucking pests efficiently. In our study, the lethal effects of flonicamid on the biological traits of R. padi were investigated via a life table approach. Flonicamid is highly efficiently toxic to R. padi, with an LC50 of 9.068 mg L−1. The adult longevity and fecundity of the R. padi F0 generation were markedly reduced under the LC25 and LC50 concentrations of flonicamid exposure. In addition, negative transgenerational effects on R. padi were observed under exposure to lethal concentrations of flonicamid, with noticeable decreases in the reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation under the LC25 concentration of flonicamid. Furthermore, the third nymph stage (N3), preadult stage, duration of the adult pre-reproductive period, duration of the total pre-reproductive period, reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation were significantly lower under treatment with the LC50 concentration of flonicamid. The life table parameters were subsequently analysed, revealing that the intrinsic rate of increase (rm) and the net reproductive rate (R0) were significantly lower but that the finite rate of increase (λ) and the mean generation time (T) were not significantly different under the LC25 and LC50 concentrations of flonicamid. These data are beneficial for grain aphid control and are critical for exploring the role of flonicamid in the integrated management of this key pest.
A classic lift decomposition (Von Kármán & Sears, J. Aeronaut. Sci., vol. 5, 1938, pp. 379–390) is conducted on potential flow simulations of a near-ground pitching hydrofoil. It is discovered that previously observed stable and unstable equilibrium altitudes are generated by a balance between positive wake-induced lift and negative quasi-steady lift while the added mass lift does not play a role. Using both simulations and experiments, detailed analyses of each lift component's near-ground behaviour provide further physical insights. When applied to three-dimensional pitching hydrofoils the lift decomposition reveals that the disappearance of equilibrium altitudes for ${A{\kern-4pt}R}\ {\rm (aspect\ ratio)} <1.5$ occurs due to the magnitude of the quasi-steady lift outweighing the magnitude of the wake-induced lift at all ground distances. Scaling laws for the quasi-steady lift, wake-induced lift and the stable equilibrium altitude are discovered. A simple scaling law for the lift of a steady foil in ground effect is derived. This scaling shows that both circulation enhancement and the velocity induced at a foil's leading edge by the bound vortex of its ground image foil are the essential physics to understand steady ground effect. The scaling laws for unsteady pitching foils can predict the equilibrium altitude to within $20\,\%$ of its value when $St\ {\rm (Strouhal\ number)} < 0.45$. For $St \ge 0.45$ there is a wake instability effect, not accounted for in the scaling relations, that significantly alters the wake-induced lift. These results not only provide key physical insights and scaling laws for steady and unsteady ground effects, but also for two schooling hydrofoils in a side-by-side formation with an out-of-phase synchronization.
We investigate the spatial distribution and dynamics of the vortices in rotating Rayleigh–Bénard convection in a reduced Rayleigh number range $1.3\le Ra/Ra_{c}\le 83.1$. Under slow rotations ($Ra\approx 80\,Ra_{c}$), the vortices are distributed randomly, which is manifested by the size distribution of the Voronoi cells of the vortex centres being a standard $\varGamma$ distribution. The vortices exhibit Brownian-type horizontal motion in the parameter range $Ra\gtrsim 10\,Ra_{c}$. The probability density functions of the vortex displacements are, however, non-Gaussian at short time scales. At modest rotating rates ($4\,Ra_{c}\le Ra\lesssim 10\,Ra_{c}$), the centrifugal force leads to radial vortex motions, i.e. warm cyclones (cold anticyclones) moving towards (outwards from) the rotation axis. The horizontal scale of the vortices decreases with decreasing $Ra/Ra_c$, and the size distribution of their Voronoi cells deviates from the $\varGamma$ distribution. In the rapidly rotating regime ($1.6\,Ra_{c}\le Ra\le 4\,Ra_{c}$), the vortices are densely distributed. The hydrodynamic interaction of neighbouring vortices results in the formation of vortex clusters. Within clusters, cyclones exhibit inverse-centrifugal motion as they submit to the outward motion of the strong anticyclones, and the radial velocity of the anticyclones is enhanced. The radial mobility of isolated vortices, scaled by their vorticity strength, is shown to be a simple power function of the Froude number. For all flow regimes studied, we show that the number of vortices with a lifespan greater than $t$ decreases exponentially as $\exp ({-t/{\tau }})$ for large time, where $\tau$ represents the characteristic lifetime of long-lived vortices.
Slowed information processing speed (IPS) is the core contributor to cognitive impairment in patients with late-life depression (LLD). The hippocampus is an important link between depression and dementia, and it may be involved in IPS slowing in LLD. However, the relationship between a slowed IPS and the dynamic activity and connectivity of hippocampal subregions in patients with LLD remains unclear.
Methods
One hundred thirty-four patients with LLD and 89 healthy controls were recruited. Sliding-window analysis was used to assess whole-brain dynamic functional connectivity (dFC), dynamic fractional amplitude of low-frequency fluctuations (dfALFF) and dynamic regional homogeneity (dReHo) for each hippocampal subregion seed.
Results
Cognitive impairment (global cognition, verbal memory, language, visual–spatial skill, executive function and working memory) in patients with LLD was mediated by their slowed IPS. Compared with the controls, patients with LLD exhibited decreased dFC between various hippocampal subregions and the frontal cortex and decreased dReho in the left rostral hippocampus. Additionally, most of the dFCs were negatively associated with the severity of depressive symptoms and were positively associated with various domains of cognitive function. Moreover, the dFC between the left rostral hippocampus and middle frontal gyrus exhibited a partial mediation effect on the relationships between the scores of depressive symptoms and IPS.
Conclusions
Patients with LLD exhibited decreased dFC between the hippocampus and frontal cortex, and the decreased dFC between the left rostral hippocampus and right middle frontal gyrus was involved in the underlying neural substrate of the slowed IPS.
Pattern-forming with externally imposed symmetry is ubiquitous in nature but little studied. We present experimental studies of pattern formation and selection by spatial periodic forcing in rapidly rotating convection. When periodic topographic structures are constructed on the heated boundary, they modulate the local temperature and velocity fields. Symmetric convection patterns in the form of regular vortex lattices are observed near the onset of convection, when the periodicity of the external forcing is set close to the intrinsic vortex spacing. We show that the new patterns arise as a dynamical process of imperfect bifurcation which is well described by a Ginzburg–Landau-like model. We explore the phase diagram of buoyancy strength and periodicity of external forcing to find the optimal experimental settings for which the vortex patterns best match that of the external forcing.
The wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Insecticide application is the main method to effectively control wheat aphids. However, CWA has developed resistance to some insecticides due to its extensive application, and understanding resistance mechanisms is crucial for the management of CWA. In our study, a new P450 gene, CYP4CJ6, was identified from CWA and showed a positive response to imidacloprid and thiamethoxam. Transcription of CYP4CJ6 was significantly induced by both imidacloprid and thiamethoxam, and overexpression of CYP4CJ6 in the imidacloprid-resistant strain was also observed. The sensitivity of CWA to these two insecticides was increased after the knockdown of CYP4CJ6. These results indicated that CYP4CJ6 could be associated with CWA resistance to imidacloprid and thiamethoxam. Subsequently, the posttranscriptional regulatory mechanism was assessed, and miR-316 was confirmed to participate in the posttranscriptional regulation of CYP4CJ6. These results are crucial for clarifying the roles of P450 in the resistance of CWA to insecticides.
Thermal convection of fluid is a more efficient way than diffusion to carry heat from hot sources to cold places. Here, we experimentally study the Rayleigh–Bénard convection of aqueous glycerol solution in a cubic cell with suspensions of rod-like particles made of polydimethylsiloxane. The particles are inertial due to their large thermal expansion coefficient and finite sizes. The thermal expansion coefficient of the particles is three times larger than that of the background fluid. This contrast makes the suspended particles lighter than the local fluid in hot regions and heavier in cold regions. The heat transport is enhanced at relatively large Rayleigh number ($\textit {Ra}$) but reduced at small $\textit {Ra}$. We demonstrate that the increase of Nusselt number arises from the particle–boundary layer interactions: the particles act as ‘active’ mixers of the flow and temperature fields across the boundary layers.
The Rhynchonellida is a major group of brachiopods that survived the “big five” mass extinctions and flourished after the Permian/Triassic (P/Tr) crisis. However, phylogenetic and character evolution in the Rhynchonellida across the P/Tr transition is poorly understood. In view of the widespread homoplasy across this order, we employ a tip-dated Bayesian analysis to reconstruct phylogenetic relationships for late Permian–Triassic rhynchonellides. The same data were also analyzed using three other methods: undated Bayesian, equal-weighting, and implied-weighting parsimony. Compared with trees generated by other methods, those constructed by tip-dating best account for the homoplasy in this group and are closer to previous assumptions on the evolution of this order. Based on the analyses of multiple trees, the major increase in lineage richness occurred in the Early and early Middle Triassic. Also, richness in the Anisian almost reached the highest level seen in the Triassic. According to fossil records, a pronounced reduction in shell size and in the development of ornamentation occurred after the P/Tr extinction, which is largely due to the loss of large and highly sculptured genera and the diversification of small-sized and weakly ornamented genera. Ancestral-state estimation of shell size and development of ornamentation, coupled with comparisons of other characters, indicate that the Early–Middle Triassic mature “small-sized taxa” may have characters displayed by juveniles of their ancestors. This suggests that for these genera, paedomorphosis was possibly a strategy to survive and diversify in the harsh environment after the P/Tr extinction.
This paper reports a new phenomenon in the near-free-surface region of open channel flows (OCFs): namely that higher relative population densities of spanwise vortices are observed than are seen at equivalent positions in turbulent boundary layers. The presence of additional retrograde spanwise vortices in OCFs throughout the region $y/h>0.2$ (where $y$ is the distance to the wall and $h$ is the water depth) prompts us to re-examine the wall-normal extent that the free-surface effect can reach, which is classically expected to be limited within the surface and blockage layers. Finally, possible mechanisms for the phenomenon of additional spanwise vortices in OCFs are provided.
Scaling laws for the thrust production and power consumption of a purely pitching hydrofoil in ground effect are presented. For the first time, ground-effect scaling laws based on physical insights capture the propulsive performance over a wide range of biologically relevant Strouhal numbers, dimensionless amplitudes and dimensionless ground distances. This is achieved by advancing previous scaling laws (Moored & Quinn (AIAA J., 2018, pp. 1–15)) with physics-driven modifications to the added mass and circulatory forces to account for ground distance variations. The key physics introduced are the increase in the added mass of a foil near the ground and the reduction in the influence of a wake-vortex system due to the influence of its image system. The scaling laws are found to be in good agreement with new inviscid simulations and viscous experiments, and can be used to accelerate the design of bio-inspired hydrofoils that oscillate near a ground plane or two out-of-phase foils in a side-by-side arrangement.
Smooth-walled open channel flow datasets, covering both the direct numerical simulation and experimental measurements with a friction Reynolds number ${\textit {Re}}_\tau$ at a low-to-moderate level of $550\sim 2400$, are adopted to investigate the contributions of different scale motions to the mean wall-shear stress in open channel flows (OCFs). The FIK identity decomposition method by Fukagata et al. (Phys. Fluids, vol. 14, 2002, L73) combined with a scale decomposition is chosen for this research. To see whether/how the contributions in OCFs differ with those in closed channel flows (CCFs), comparisons between the two flows are also made. The scale-decomposed ‘turbulent’ contribution results of present OCFs exhibit two dominant contribution modes (i.e. large-scale motions (LSMs) and very-large-scale motions (VLSMs)) at a streamwise wavelength $\lambda _x=1\sim 2h$ and $O(10h)$, where $h$ is the water depth. The large scales with $\lambda _x>3h$ and $\lambda _x>10h$ are demonstrated to contribute to over 40 % and 20 % of the mean wall-shear stress, respectively. Compared with CCFs, slightly higher and lower contributions in the $\lambda _x>O(10h)$ and $\lambda _x < O(10h)$ wavelength ranges are observed in OCFs, revealing the important free-surface effects in OCFs. Possible mechanisms are discussed to lend support for the observed differences between the two flows.
Animals and bio-inspired robots can swim/fly faster near solid surfaces, with little to no loss in efficiency. How these benefits change with propulsor aspect ratio is unknown. Here we show that lowering the aspect ratio weakens unsteady ground effect, thrust enhancements become less noticeable, stable equilibrium altitudes shift lower and become weaker and wake asymmetries become less pronounced. Water-channel experiments and potential flow simulations reveal that these effects are consistent with known unsteady aerodynamic scalings. We also discovered a second equilibrium altitude even closer to the wall (${<}0.35$ chord lengths). This second equilibrium is unstable, particularly for high-aspect-ratio foils. Active control may therefore be required for high-aspect-ratio swimmers hoping to get the full benefit of near-ground swimming. The fact that aspect ratio alters near-ground propulsion suggests that it may be a key design parameter for animals and robots that swim/fly near a seafloor or surface of a lake.
The structural changes recent-onset posttraumatic stress disorder (PTSD) subjects were rarely investigated. This study was to compare temporal and causal relationships of structural changes in recent-onset PTSD with trauma-exposed control (TEC) subjects and non-TEC subjects.
Methods
T1-weighted magnetic resonance images of 27 PTSD, 33 TEC and 30 age- and sex-matched healthy control (HC) subjects were studied. The causal network of structural covariance was used to evaluate the causal relationships of structural changes in PTSD patients.
Results
Volumes of bilateral hippocampal and left lingual gyrus were significantly smaller in PTSD patients and TEC subjects than HC subjects. As symptom scores increase, reduction in gray matter volume began in the hippocampus and progressed to the frontal lobe, then to the temporal and occipital cortices (p < 0.05, false discovery rate corrected). The hippocampus might be the primary hub of the directional network and demonstrated positive causal effects on the frontal, temporal and occipital regions (p < 0.05, false discovery rate corrected). The frontal regions, which were identified to be transitional points, projected causal effects to the occipital lobe and temporal regions and received causal effects from the hippocampus (p < 0.05, false discovery rate corrected).
Conclusions
The results offer evidence of localized abnormalities in the bilateral hippocampus and remote abnormalities in multiple temporal and frontal regions in typhoon-exposed PTSD patients.
The Order Spiriferinida spanning the latest Ordovician to Early Jurassic is a small group of brachiopods overshadowed by other taxon-rich clades during the Paleozoic. It diversified significantly after the end-Permian extinction and became one of the four major clades of Triassic brachiopods. However, the phylogeny and recovery dynamics of this clade during the Triassic still remain unknown. Here, we present a higher-level parsimony-based phylogenetic analysis of Mesozoic spiriferinids to reveal their evolutionary relationships. Ecologically related characters are analyzed to indicate the variances in ecomorphospace occupation and disparity of spiriferinids through the Permian–Triassic (P-Tr) transition. For comparison with potential competitors of the spiriferinids, the pre-extinction spiriferids are also included in the analysis. Phylogenetic trees demonstrate that about half of the Mesozoic families appeared during the Anisian, indicating the greatest phylogenetic diversification at that time. Triassic spiriferinids reoccupied a large part of the ecomorphospace released by its competitor spiriferids during the end-Permian extinction; they also fully exploited the cyrtiniform region and developed novel lifestyles. Ecomorphologic disparity of the spiriferinids dropped greatly in the Early Triassic, but it rebounded rapidly and reached the level attained by the pre-extinction spiriferids in the Late Triassic. The replacement in ecomorphospace occupation between spiriferids and spiriferinids during the P-Tr transition clearly indicates that the empty ecomorphospace released by the extinction of Permian spiriferids was one of the important drivers for the diversification of the Triassic spiriferinids. The Spiriferinida took over the empty ecomorphospace and had the opportunity to flourish.
Time-resolved particle image velocimetry measurements were performed in smooth-walled open channels to investigate the contributions of very large-scale motions (VLSMs) to the turbulence characteristics in open channel flows. The focal point is to clarify the free surface effects on the characteristics of VLSMs and the contributions of VLSMs to the unique statistical features in open channel flows (i.e., the turbulent kinetic energy (TKE) redistribution and smaller wake strength of the mean velocity profile). The resulting wavelength of VLSMs in present smooth-walled open channels is approximately $20h$ ($h$ is water depth), which is comparable to that in pipe and closed channels while smaller than that in rough-walled open channels, and they are shown to make a great contribution to turbulence statistics with over 50 % of streamwise turbulence intensity, Reynolds shear stress and negative net force coming from VLSMs in the outer layer. Compared with other wall-bounded flows, VLSMs maintain higher strength in the outer layer of open channel flows with non-negligible strength even in the near surface region ($y\sim >0.8h$), indicating that the free surface seems to sustain/promote VLSMs. This strength difference of VLSMs closely relates to the TKE redistribution and smaller wake strength of the mean velocity in the outer layer of open channel flows. The higher streamwise turbulence intensity is mainly contributed from the higher strength of VLSMs therein. The decelerating role of VLSMs combining with their higher strength is vital for shaping the mean velocity profile, which therefore is speculated to make a great contribution to the smaller wake strength phenomenon.
Multi-fin systems, like fish or fish-inspired vehicles, are governed by unsteady three-dimensional interactions between their multiple fins. In particular, dorsal/anal fins have received much attention because they are just upstream of the main thrust-producing fin: the caudal (tail) fin. We used a tuna-inspired fish model with variable fin sharpness to study the interaction between elongated dorsal/anal fins and caudal fins. We found that the performance enhancement is stronger than previously thought (15 % increase in swimming speed and 50 % increase in swimming economy) and is governed by a three-dimensional dorsal-fin-induced cross-flow that lowers the angle of attack on the caudal fin and promotes spanwise flow. Both simulations and multi-layer particle image velocimetry reveal that the cross-flow stabilizes the leading edge vortex on the caudal fin, similar to how wing strakes prevent stall during fixed-wing aircraft manoeuvres. Unlike other fin–fin interactions, this mechanism is phase-insensitive and offers a simple, passive solution for flow control over oscillating propulsors. Our results therefore improve our understanding of multi-fin flow interactions and suggest new insights into dorsal/anal fin shape and placement in fish and fish-inspired vehicles.
Experiments and computations are presented for a foil pitching about its leading edge near a planar, solid boundary. The foil is examined when it is constrained in space and when it is unconstrained or freely swimming in the cross-stream direction. It was found that the foil has stable equilibrium altitudes: the time-averaged lift is zero at certain altitudes and acts to return the foil to these equilibria. These stable equilibrium altitudes exist for both constrained and freely swimming foils and are independent of the initial conditions of the foil. In all cases, the equilibrium altitudes move farther from the ground when the Strouhal number is increased or the reduced frequency is decreased. Potential flow simulations predict the equilibrium altitudes to within 3 %–11 %, indicating that the equilibrium altitudes are primarily due to inviscid mechanisms. In fact, it is determined that stable equilibrium altitudes arise from an interplay among three time-averaged forces: a negative jet deflection circulatory force, a positive quasistatic circulatory force and a negative added mass force. At equilibrium, the foil exhibits a deflected wake and experiences a thrust enhancement of 4 %–17 % with no penalty in efficiency as compared to a pitching foil far from the ground. These newfound lateral stability characteristics suggest that unsteady ground effect may play a role in the control strategies of near-boundary fish and fish-inspired robots.
Scaling laws for the thrust production and energetics of self-propelled or fixed-velocity three-dimensional rigid propulsors undergoing pitching motions are presented. The scaling relations extend the two-dimensional scaling laws presented in Moored & Quinn (AIAA J., 2018, pp. 1–15) by accounting for the added mass of a finite-span propulsor, the downwash/upwash effects from the trailing vortex system of a propulsor and the elliptical topology of shedding trailing-edge vortices. The novel three-dimensional scaling laws are validated with self-propelled inviscid simulations and fixed-velocity experiments over a range of reduced frequencies, Strouhal numbers and aspect ratios relevant to bio-inspired propulsion. The scaling laws elucidate the dominant flow physics behind the thrust production and energetics of pitching bio-propulsors, and they provide guidance for the design of bio-inspired propulsive systems.