We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study documents several correlations observed during the first run of the plasma wakefield acceleration experiment E300 conducted at FACET-II, using a single drive electron bunch. The established correlations include those between the measured maximum energy loss of the drive electron beam and the integrated betatron X-ray signal, the calculated total beam energy deposited in the plasma and the integrated X-ray signal, among three visible light emission measuring cameras and between the visible plasma light and X-ray signal. The integrated X-ray signal correlates almost linearly with both the maximum energy loss of the drive beam and the energy deposited into the plasma, demonstrating its usability as a measure of energy transfer from the drive beam to the plasma. Visible plasma light is found to be a useful indicator of the presence of a wake at three locations that overall are two metres apart. Despite the complex dynamics and vastly different time scales, the X-ray radiation from the drive bunch and visible light emission from the plasma may prove to be effective non-invasive diagnostics for monitoring the energy transfer from the beam to the plasma in future high-repetition-rate experiments.
To assess whether measurement and feedback of chlorhexidine gluconate (CHG) skin concentrations can improve CHG bathing practice across multiple intensive care units (ICUs).
Design:
A before-and-after quality improvement study measuring patient CHG skin concentrations during 6 point-prevalence surveys (3 surveys each during baseline and intervention periods).
Setting:
The study was conducted across 7 geographically diverse ICUs with routine CHG bathing.
Participants:
Adult patients in the medical ICU.
Methods:
CHG skin concentrations were measured at the neck, axilla, and inguinal region using a semiquantitative colorimetric assay. Aggregate unit-level CHG skin concentration measurements from the baseline period and each intervention period survey were reported back to ICU leadership, which then used routine education and quality improvement activities to improve CHG bathing practice. We used multilevel linear models to assess the impact of intervention on CHG skin concentrations.
Results:
We enrolled 681 (93%) of 736 eligible patients; 92% received a CHG bath prior to survey. At baseline, CHG skin concentrations were lowest on the neck, compared to axillary or inguinal regions (P < .001). CHG was not detected on 33% of necks, 19% of axillae, and 18% of inguinal regions (P < .001 for differences in body sites). During the intervention period, ICUs that used CHG-impregnated cloths had a 3-fold increase in patient CHG skin concentrations as compared to baseline (P < .001).
Conclusions:
Routine CHG bathing performance in the ICU varied across multiple hospitals. Measurement and feedback of CHG skin concentrations can be an important tool to improve CHG bathing practice.
The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project will test the overarching hypothesis that an active hydrological system exists beneath a West Antarctic ice stream that exerts a major control on ice dynamics, and the metabolic and phylogenetic diversity of the microbial community in subglacial water and sediment. WISSARD will explore Subglacial Lake Whillans (SLW, unofficial name) and its outflow toward the grounding line where it is thought to enter the Ross Ice Shelf seawater cavity. Introducing microbial contamination to the subglacial environment during drilling operations could compromise environmental stewardship and the science objectives of the project, consequently we developed a set of tools and procedures to directly address these issues. WISSARD hot water drilling efforts will include a custom water treatment system designed to remove micron and sub-micron sized particles (biotic and abiotic), irradiate the drilling water with germicidal ultraviolet (UV) radiation, and pasteurize the water to reduce the viability of persisting microbial contamination. Our clean access protocols also include methods to reduce microbial contamination on the surfaces of cables/hoses and down-borehole equipment using germicidal UV exposure and chemical disinfection. This paper presents experimental data showing that our protocols will meet expectations established by international agreement between participating Antarctic nations.
Ab initio Hartree-Fock and second-order Möller-Plesset theory calculations have been performed to investigate the stability of triply-coordinated 0+ centers in the Si-O-Si network of amorphous SiO2. The calculations reveal that the H+ ion binds with a bridging O center to form a very stable (De > 6 eV) trivalent O complex. Capture of an electron by the positively charged protonated complex, however, is predicted to immediately lead to the dissociation of the O-H bond. A relatively weaker, but stable bond is also formed between the bridging O atom and a +SiH3 ion.
Knoop hardness measurements have been carried out as a function of azimuthal angle and temperature (in the range 20°–440°C) on {001} faces of n-type, p-type, and intrinsic Ge and GaAs. The degree of hardness anisotropy shown increases with increasing temperature and for Ge is undetectable below a certain temperature which depends on doping. In GaAs, asymmetry in hardness between [110] and [110] directions was found at high temperatures. A new model of hardness anisotropy has been developed, based on detailed modeling of the plastic zone. This relates the hardness to the degree of workhardening in different regions of the plastic zone. Using this model, detailed explanations are given of the hardness anisotropy behavior and of the plastic recovery around indentations.