We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We have developed the bispectral electroencephalography (BSEEG) method for detection of delirium and prediction of poor outcomes.
Aims
To improve the BSEEG method by introducing a new EEG device.
Method
In a prospective cohort study, EEG data were obtained and BSEEG scores were calculated. BSEEG scores were filtered on the basis of standard deviation (s.d.) values to exclude signals with high noise. Both non-filtered and s.d.-filtered BSEEG scores were analysed. BSEEG scores were compared with the results of three delirium screening scales: the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU), the Delirium Rating Scale-Revised-98 (DRS) and the Delirium Observation Screening Scale (DOSS). Additionally, the 365-day mortalities and the length of stay (LOS) in the hospital were analysed.
Results
We enrolled 279 elderly participants and obtained 620 BSEEG recordings; 142 participants were categorised as BSEEG-positive, reflecting slower EEG activity. BSEEG scores were higher in the CAM-ICU-positive group than in the CAM-ICU-negative group. There were significant correlations between BSEEG scores and scores on the DRS and the DOSS. The mortality rate of the BSEEG-positive group was significantly higher than that of the BSEEG-negative group. The LOS of the BSEEG-positive group was longer compared with that of the BSEEG-negative group. BSEEG scores after s.d. filtering showed stronger correlations with delirium screening scores and more significant prediction of mortality.
Conclusions
We confirmed the usefulness of the BSEEG method for detection of delirium and of delirium severity, and prediction of patient outcomes with a new EEG device.
The risk of malaria outbreak surfaced in Vanuatu after Tropical Cyclone (TC) Pam in March 2015. In June and July 2015 we conducted malariometric surveys on the islands of Tanna, Aneityum, and Erromango in Tafea Province, where malaria elimination had been targeted, to determine if malaria incidence had increased after TC Pam. No Plasmodium infection was detected by microscopy and PCR in 3009 survey participants. Only 6·3% (190/3007) of participants had fever. Spleen rates in children aged ⩽12 years from Aneityum and Tanna were low, at 3·6% (14/387) and 5·3% (27/510), respectively. Overall bed net use was high at 72·8% (2175/2986); however, a significantly higher (P < 0·001) proportion of participants from Aneityum (85·9%, 796/927) reported net use than those from Tanna (67·1%, 751/1119) and Erromango (66·8%, 628/940). A recent decrease in malaria incidence in Tafea Province through comprehensive intervention measures had reduced the indigenous parasite reservoir and limited the latter's potential to spur an outbreak after TC Pam. The path towards malaria elimination in Tafea Province was not adversely affected by TC Pam.
We present high resolution molecular line observations of dusty AGN and starburst in nearby luminous infrared galaxies (LIRGs), VV 114 (band 3/4/7) and NGC 1614 (band 3/6/7/9), with ALMA. Multi-frequency imaging from 4.8 GHz to 691 GHz of NGC 1614 allows us to study spatial properties of the radio-to-FIR continuum and multiple CO transitions, and we find the CO excitation up to Jupp = 6 can be explained by a single ISM model powered by nuclear starbursts. Our processing line imaging survey for VV 114 detected at least 30 molecular lines which show different chemical composition from region to region. Multi-molecule imaging helps us to diagnose the chemical differences of dusty ISM, while multi-transition imaging allows us to investigate gas physical conditions affected by nuclear activities directly.
This paper reports results from a U.S. national telephone survey ongenetically modified foods (vegetable oil, cornflakes, and salmon). Thesurvey featured a contingent valuation in which respondents chose betweenthe GM and non-GM alternatives with an option of indifference. The binomialand multinomial logit models yielded estimated willingness to pay (WTP) toavoid the GM alternatives. Respondents were willing to pay 20.9%, 14.8%,28.4%, and 29.7% of the base prices to avoid GM vegetable oil, GMcornflakes, GM-fed salmon, and GM salmon, respectively. The inclusion ofindifference option could increase the sample size and moderate the meanWTP.
Our new compilation of interferometric CO data suggests that nuclear and extended molecular gas disks are common in the final stages of mergers. Comparing the sizes of the molecular gas disk and gas mass fractions to early-type and late-type galaxies, about half of the sample show similar properties to early-type galaxies, which have compact gas disks and low gas mass fractions. We also find that sources with extended gas disks and large gas mass fractions may become disk-dominated galaxies.
We have been monitoring the flux density of Sagittarius A* (Sgr A*) at 22 GHz since DOY=42 (11 Feb. 2013) with a sub-array of the Japanese VLBI Network in order to search the increase of 22-GHz emission from Sgr A* induced by the interaction of the G2 cloud with the accretion disk. The flux densities observed until DOY=322 (18 Nov. 2013) are consistent with the previously observed values before the approaching of the cloud. We have detected no large flare during this period.
By
Arnulf Grubler, International Institute for Applied Systems Analysis, Austria and Yale University,
Xuemei Bai, Australian National University,
Thomas Buettner, United Nations Department of Economic and Social Affairs,
Shobhakar Dhakal, Global Carbon Project and National Institute for Environmental Studies,
David J. Fisk, Imperial College London,
Toshiaki Ichinose, National Institute for Environmental Studies,
James E. Keirstead, Imperial College London,
Gerd Sammer, University of Natural Resources and Applied Life Sciences,
David Satterthwaite, International Institute for Environment and Development,
Niels B. Schulz, International Institute for Applied Systems Analysis, Austria and Imperial College,
Nilay Shah, Imperial College London,
Julia Steinberger, The Institute of Social Ecology, Austria and University of Leeds,
Helga Weisz, Potsdam Institute for Climate Impact Research,
Gilbert Ahamer, University of Graz,
Timothy Baynes, Commonwealth Scientific and Industrial Research Organisation,
Daniel Curtis, Oxford University Centre for the Environment,
Michael Doherty, Commonwealth Scientific and Industrial Research Organisation,
Nick Eyre, Oxford University Centre for the Environment,
Junichi Fujino, National Institute for Environmental Studies,
Keisuke Hanaki, University of Tokyo,
Mikiko Kainuma, National Institute for Environmental Studies,
Shinji Kaneko, Hiroshima University,
Manfred Lenzen, University of Sydney,
Jacqui Meyers, Commonwealth Scientific and Industrial Research Organisation,
Hitomi Nakanishi, University of Canberra,
Victoria Novikova, Oxford University Centre for the Environment,
Krishnan S. Rajan, International Institute of Information Technology,
Seongwon Seo, Commonwealth Scientific and Industrial Research Organisation,
Ram M. Shrestha, Asian Institute of Technology,
Priyadarshi R. Shukla, Indian Institute of Management,
Alice Sverdlik, International Institute for Environment and Development,
Jayant Sathaye, Lawrence Berkeley National Laboratory
More than 50% of the global population already lives in urban settlements and urban areas are projected to absorb almost all the global population growth to 2050, amounting to some additional three billion people. Over the next decades the increase in rural population in many developing countries will be overshadowed by population flows to cities. Rural populations globally are expected to peak at a level of 3.5 billion people by around 2020 and decline thereafter, albeit with heterogeneous regional trends. This adds urgency in addressing rural energy access, but our common future will be predominantly urban. Most of urban growth will continue to occur in small-to medium-sized urban centers. Growth in these smaller cities poses serious policy challenges, especially in the developing world. In small cities, data and information to guide policy are largely absent, local resources to tackle development challenges are limited, and governance and institutional capacities are weak, requiring serious efforts in capacity building, novel applications of remote sensing, information, and decision support techniques, and new institutional partnerships. While ‘megacities’ with more than 10 million inhabitants have distinctive challenges, their contribution to global urban growth will remain comparatively small.
Energy-wise, the world is already predominantly urban. This assessment estimates that between 60–80% of final energy use globally is urban, with a central estimate of 75%. Applying national energy (or GHG inventory) reporting formats to the urban scale and to urban administrative boundaries is often referred to as a ‘production’ accounting approach and underlies the above GEA estimate.
We show that the dispersion in the Schmidt-Kennicutt (SK) law in galaxies is affected significantly by the evolutionary stage of star forming molecular gas, using narrow band Paα imaging of Taffy I, an interacting pair of galaxies. Star forming regions in the system show very uniform ages except for the bridge region, and the SK law of regions at the same age show a exceptionally tight SK law.
Epitaxial magnesium oxide (MgO) thin films prepared on Si(0 0 1) substrates revealed the contraction of its lattice constants along both out-of-plane and in-plane directions. X-ray Diffraction (XRD) verified the epitaxial growth with the relation of MgO(1 0 0) parallel to Si(1 0 0) [cubic on cubic growth] with large lattice misfit of ~22% instead of the relation of MgO(1 1 0) parallel to Si(1 0 0) [45° rotation growth] with lattice mismatch of ~9%. Although the domain epitaxy explaining the cubic on cubic growth is preferred in terms of crystallography, structural stability is not considered in the concept of the domain epitaxy. In order to explain the contraction of lattice constant from point of view of structural stability, ab initio method was used to evaluate all-electron total energy, and optimal lattice constant was estimated with point defects in the MgO structure.
We review the progress in the electron tomography of dislocation microstructures in the transmission electron microscope (TEM). Dislocation contrast is visible both in conventional TEM and scanning TEM (STEM) modes and, despite the complicated intensity variations, dislocation contrast can be isolated using computational filtering techniques prior to reconstruction. We find that STEM annular dark-field (STEM-ADF) imaging offers significant advantages in terms of dislocation contrast and background artifacts. We present several examples, both in semiconducting and metallic systems, illustrating the properties of 3D dislocations. We present the high-angle triple-axis (HATA) specimen holder where the diffraction condition can be chosen at will and dislocation tomograms of multiple reflections can be combined. 3D dislocations are analyzed in terms of dislocation density and dislocation nodal structures. Several avenues of study are suggested that may exploit the 3D dislocation data.
We have synthesized nickel by means of pulsed laser ablation. A nickel disc was used for ablation with the focused output of fundamental harmonic from Nd:YAG laser. X-ray diffraction result shows that the synthesized nanoparticles are of pure metallic nickel with a face-centred cubic structure and the average particle size is 35 nm. The extended X-ray absorption fine structure (EXAFS) studies of pure nickel foil and the synthesized nanoparticles show similar structures. The position of the main peak is same in these nanoparticles with reference to the nickel foil. The only difference was observed in the reduction of the amplitude. The nearest-neighbour distance is similar as for pure nickel foil. The Debye–Waller factor is also similar. There is no trace of oxide and hydroxide in the EXAFS data, suggesting that the synthesized nanoparticles contain only nickel metal.
We have conducted all disk imaging of M33 in 12CO(1-0) using the 45-m telescope at Nobeyama Radio Observatory. We present preliminary results of this project. The spatial resolution of ~ 80 pc is comparable to the size of GMCs. The identified GMCs show wide variety in star forming activity. The variety can be regarded as the difference of their evolutionary stage. We found that Kennicutt-Schmidt law breaks in GMC scale (~ 80 pc), although it is still valid in 1 kpc scale. The correlation between molecular gas fraction, fmol = Σ(H2)/Σ(HI+H2) and gas surface density shows two distinct sequences and shows that fmol tends to be higher near the center. We also made partial mapping 12CO(3-2) with ASTE telescope. These data show that the variation of physical properties of molecular gas are correlated with the GMC evolution and mass. That is, GMCs with more active star formation and more mass tend to have higher fraction of dense gas.
As the Nobeyama Radio Observatory Legacy Project: Survey of Giant Molecular Clouds in M33, we have been mapping M33 in CO(1-0) with the multi-beam receiver BEARS equipped on the 45-m telescope using the OTF mapping technique since 2007. The purpose of this project is to investigate the physical properties of GMCs and understand the evolutionary process from GMC formation to star formation in GMCs by comparing with various data such as CO(3-2), 1.1 mm continuum obtained with ASTE10m telescope at Atacama and the optical data obtained with SUBARU. We identified 87 GMCs using the first year data of CO(1-0) and observed 28 GMCs among them in CO(3-2) with ASTE (Onodera 2009, PhD thesis, University of Tokyo). From the comparison of these lines, it was shown that the CO(3-2)/CO(1-0) ratio increases with star forming activity in the GMCs. Furthermore, we found that more massive GMCs tend to have higher CO(3-2)/CO(1-0) ratio. Since the ratio is thought to be an indicator of the fraction of warm and dense molecular gas, our results imply that the fraction of warm and dense gas increases with GMC mass. Especially, since the ratio in the GMCs with low star forming activity is in the range where the ratio depends mainly on the density, we speculate that dense gas fraction increases with GMC mass.
Three-dimensional electrostatic particle simulations are performed in order to investigate the effects of ion flow parallel to magnetic-field lines and their velocity shears on low-frequency plasma instabilities in detail. In the case where the ion drift speed is so small that the low-frequency instabilities cannot take place, the ion-acoustic wave is destabilized by introducing the ion-flow velocity shear. The ion-acoustic wave is locally destabilized in the large velocity shear region. On the other hand, the ion-cyclotron instability is also destabilized when the ion drift speed exceeds a certain threshold. The flow velocity shear enhances not only the fundamental mode but also the high harmonic modes. As a result, the spiky fluctuations in the time domain are locally observed in the velocity shear region, which are caused by the simultaneous existence of several coherent ion-cyclotron harmonics.
We propose a probe storage using a carbon film deposited by electron cyclotron resonance plasma (ECR) sputtering as a recording material. Such storage has a potential to achieve an electrical data storage with small writing voltage and ultra high recording density due to super hardness and large electric conductivity of the ECR sputtered carbon (ECR-C). The ECR-C film is deposited on a silicon substrate covered by a thermal oxide. Recording experiments are performed by a conductive atomic force microscope with a gold coated tip. The electrical resistance of the film surface is decreased locally by applying voltages smaller than 2V between the film and the tip. The resistance decrease of the film by the voltage application are caused by a thermal reaction due to Joule's heat at contact portion of the film with the tip. Data bits with size of about 70nm can be formed by applying a pulse row as a writing voltage.
Copper-doped carbon aerogels, which were prepared by sol-gel polymerization of a mixture of resorcinol, formaldehyde and copper ions, followed by supercritical drying with liquid CO2 and carbonization at different temperatures under a N2 atmosphere, were characterized by magnetic susceptibility and temperature-dependent conductivity measurements. The experimental results show that the magnetic susceptibilities (χ) of all the copper-doped carbon aerogels are larger than that of the blank carbon aerogel. The temperature-dependent magnetic susceptibilities of the copper-doped carbon aerogels are well fit to a Curie function in the low temperature region (below 45 K). According to the Curie constant obtained, the spin concentration (N) of the copper-doped carbon aerogels was calculated and the results show that the spin concentration of doped samples increases at first with an increase in the copper concentration used in doping, and then drops from the maximum in N and χ when the copper concentration is further increased above 0.1 wt%. Magnetic susceptibility results suggest that copper-doped carbon aerogels carbonized at 800 °C are more disordered than those carbonized at 1000 °C. The conductivity of these copper-doped carbon aerogels is apparently higher than that of the blank carbon aerogel, especially at low temperature (T < 45 K). The temperature-dependent resistivities of both the copper-doped and the blank carbon aerogels follow a linear functional form log ρ(T) ∼ (1/T)1/2 with two distinct regions below and above 45 K, indicating that the conduction of both the copper-doped and the blank carbon aerogels obey a tunneling and/or a hopping mechanism.
Organic light emitting diodes (OLEDs) containing cathode buffer layers of nanometer thickness were fabricated and their electrical and emitting properties were investigated. The OLEDs have an indium tin oxide (ITO) anode/ copper phthalocyanine (CuPc) / N, N'-dephenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) / 8- hydroxyquinoline aluminum (Alq3) / buffer layer / Al cathode structure with the buffer layers made from alternating thin films of Alq3 and Al with nanometer thickness. Improvement of driving voltage and the efficiency for the devices were observed by insertion of the buffer layer. It was estimated that some modulations of the Schottky barrier at the Alq3 and the Al cathode interface were induced due to the insertion of the buffer layer and it caused an enhancement of electron injection from the Al cathode. A model of the band structure at the buffer layer was proposed.