We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vertigo and dizziness are frequent symptoms in patients at out-patient services. An accurate diagnosis for vertigo or dizziness is essential for symptom relief; however, it is often challenging. This study aimed to identify differences in diagnoses between primary-care physicians and specialised neurotologists.
Method
In total, 217 patients were enrolled. To compare diagnoses, data was collected from the reference letters of primary-care physicians, medical questionnaires completed by patients and medical records.
Results
In total, 62.2 per cent and 29.5 per cent of the patients were referred by otorhinolaryngologists and internists, respectively. The cause of vertigo or dizziness and diagnosis was missing in 47.0 per cent of the reference letters. In addition, 67.3 per cent of the diagnoses by previous physicians differed from those reported by specialised neurotologists.
Conclusion
To ensure patient satisfaction and high quality of life, an accurate diagnosis for vertigo or dizziness is required; therefore, methods or materials to improve the diagnostic accuracy are needed.
The correlation of stress in Silicon Carbide (SiC) crystal and frequency shift in micro- Raman spectroscopy was determined by an experimental method. We applied uniaxial stress to 4H- and 6H-SiC single crystal square bar specimen shaped with (0001) and (11-20) faces by four point bending test, under measuring the frequency shift in micro-Raman spectroscopy. The results revealed that the linearity coefficients between stress and Raman shift were -1.96 cm-1/GPa for FTO(2/4)E2 on 4H-SiC (0001) face, -2.08 cm-1/GPa for FTO(2/4)E2 on 4H-SiC (11-20) face and -2.70 cm-1/GPa for FTO(2/6)E2 on 6H-SiC (0001) face. Determination of these coefficients has made it possible to evaluate the residual stress in SiC crystal quantitatively by micro-Raman spectroscopy. We evaluated the residual stress in SiC substrate that was grown in our laboratory by utilizing the results obtained in this study. The result of estimation indicated that the SiC substrate with a diameter of 6 inch remained residual stress as low as ±15 MPa.
X-ray-excited luminescence of GaN doped with Eu ions as a luminescent center was observed in the wavelength range from 350 nm to 650 nm. Three peaks at 375 nm, 550 nm and 622 nm were found. To survey the mechanism of the photoluminescence due to non-resonance excitation, photoluminescence X-ray excitation spectra are also measured. The mechanism of the luminescence occurrence was briefly discussed based on the model developed by Emura et al.
The wettability of Pb-free Sn-based solder over the Cu-based Cu60Zr30Ti10 bulk metallic glass surface was investigated. We observed that the as-polished surface was nonwetting for the solder, which was due to the surface oxide layer of ZrOx formed in air. After complete removal of the oxide layer, a thin layer of Ag was deposited on the clean Cu60Zr30Ti10 surface. The Ag-covered Cu60Zr30Ti10 surface showed relatively high resistivity to the reoxidation even in air, and thus the wettability of the Cu60Zr30Ti10 surface for the Sn-based solder was greatly improved.
Three cDNAs encoding rhoptry-associated protein 1 (RAP-1) homologues were found in the Babesia gibsoni EST database. Based on similarities to BgRAP-1a, which was identified previously by serological screening of a cDNA merozoite library, the two new genes were designated BgRAP-1b (33·7%) and BgRAP-1c (57%). Mice antiserum raised against each recombinant protein reacted specifically with B. gibsoni parasites as determined by Western blotting, which showed native molecular sizes of the BgRAP-1a (51 kDa), BgRAP-1b (53 kDa) and BgRAP-1c (47 kDa) consistent with predictable molecular weights. Immunofluoresence using these antibodies revealed localization of all BgRAP-1s within the matrix of merozoites; however, BgRAP-1a appeared to diverge from the other two when it was found secreted into the cytoplasm of infected erythrocytes. Apical localization of all 3 BgRAP-1s during the extracellular stage of the parasite combined with their ability to bind a canine erythrocyte membrane fraction was suggestive of a role for these proteins in erythrocyte attachment. Lastly, the ability of these recombinant proteins to be used as diagnostic reagents was tested by ELISA and the sensitivities of BgRAP-1a and BgRAP-1c were found increased through N-terminal truncation. Taken together, our data suggest divergent roles for the 3 BgRAP-1s in the merozoite stage of B. gibsoni.
From January 1985 to May 1991, herald strains of influenza B virus were isolated in 1987 and 1989 in Japan. In both cases, influenza epidemics caused by the same type followed in the next winter season. The HA gene sequences of the influenza B viruses isolated in Japan from 1987–91, which covers two herald waves of influenza B viruses, were analysed and located on the phylogenetic tree for influenza B viruses after the B/Singapore/64 strain. Co-circulation of at least two evolutionary lineages of the HA genes existed for influenza B viruses in Japan during the period of this study. The herald viruses in one wave (1987) were genetically close to the winter isolates and were considered to be the parental viruses for the following influenza season, while in the other wave (1989) winter isolates belonged to another lineage on which one of the herald viruses was located, but they were genetically and antigenically different from the herald viruses.
Influenza B virus reinfection in Japanese children was studied epidemi-ologically during 1979–91 and virologically during 1985–91. During this investigation, there were four epidemics caused by influenza B viruses, each of which accompanied antigenic drift. Between the epidemics in 1987/88 and 1989/90, the viruses changed drastically, both genetically and antigenically. The minimum rate of reinfection with influenza B virus during the whole period was 3–25% depending on the influenza seasons. The antigens of primary and reinfection strains of influenza B virus isolated from 18 children during 1985–90, which covered three epidemic periods, were studied by haemagglutination inhibition tests. The results showed that the viruses isolated in the 1984/85 and 1987/88 influenza seasons, which belonged to the same lineage, were antigenically close, and reinfection occurred with these viruses. The results of amino-acid analysis of the HA1 polypeptide of these viruses corresponded with those of antigenic analysis. There were no specific amino-acid changes shared by the primary infection and reinfection influenza B viruses; the patients were infected with the viruses epidemic at that time.
The epidemiology of influenza A in Japan was studied during 1979–91 and viruses isolated from reinfections during 1983–91 were analysed, Of 2963 influenza viruses isolated during this period, 922 and 1006 were influenza A(H1N1) and A(H3N2) viruses respectively; the others were influenza B viruses. Influenza A(H1N1) and A(H3N2) caused 5 and 6 epidemics respectively, most accompanied by antigenic drift. Seventeen reinfections with H1N1 and 17 with H3N2 were detected during our study. The primary and reinfection strains isolated from 7 H1N1 and 10 H3N2 cases were studied by haemagglutination-inhibition, and amino acid and nucleotide sequences of the HA1 region of the haemagglutinin. Most of the primary and reinfection strains were antigenically and genetically similar to the epidemic viruses circulating at that time. However, in 4 out of 10 cases of reinfection with influenza H3N2 virus, reinfection strains were genetically different from the epidemic viruses.
From January 1985 to March 1989, off-season viruses of H1N1 and H3N2 subtypes of influenza A viruses were isolated on five occasions in Japan. The HA gene sequences of the influenza A(H1N1) and A(H3N2) viruses isolated in Japan from 1985–9 were analysed and the phylogenetic tree for each subtype virus was constructed to determine any genetic relationship between viruses isolated in off-seasons and the epidemic viruses of the following influenza seasons. In one instance with H1N1 viruses in 1986 and in two instances with H3N2 viruses in 1985 and 1987, the spring isolates were genetically close to some of the winter isolates and were considered to be the parental viruses of the following influenza seasons. However, even in these cases, influenza viruses of the same subtype with different lineages co-circulated in Japan.
Ionospheric acceleration of high energy particles by a short wavelength microwave pulse is discussed. The intense electromagnetic waves in an ionospheric (F2) or magnetospheric plasma can be self-trapped above a threshold power. The self-binding property and the consequent self-induced transparency of the triple soliton structure of two electromagnetic waves and a plasma wave allow the propagation of an intense electromagnetic pulse without the severe and wasteful distortion that accompanies low power pulse propagation. The effects of magnetospheric fluctuations on the particle beam transport are considered. The fluctuation-induced transport seems to be within the margin of tolerance for useful beam transport. Orbits of negatively charged particles are stable. While synchrotron radiation loss for electrons is prohibitive, that of muons and antiprotons is negligible. A corresponding terrestrial application is also suggested.
Atomic modeling of high-Z partially ionized plasma is essential for simulating radiation hydrodynamics of laser-produced plasma. A collisional-radiative model based upon an average atom model is used to calculate plasma opacity and emissivity. Because line radiations are most dominant in such plasma, the detail configuration accounting (DCA) for electronic state is required. We propose a statistical method to carry out the DCA with the use of the average population of bound electrons. Further modeling of line group made of the same transition from ions in different change states is discussed by considering the detail structure (hierarchy) of the line group.
Adrenomedullin is a potent vasodilatory peptide. The mechanisms of adrenomedullin-induced responses are via guanine nucleotide guanosine 5′-triphosphate-binding protein (G-protein)-coupled receptor activation and are similar to those of calcitonin gene-related peptide (CGRP). Previously, we reported that sevoflurane and isoflurane inhibit CGRP-induced haemodynamic responses. The effects of volatile anaesthetics on adrenomedullin-induced haemodynamic responses, however, are unclear. We hypothesized that the volatile anaesthetic isoflurane inhibits adrenomedullin-induced haemodynamic responses. We studied the effects of isoflurane on adrenomedullin-induced haemodynamic responses in pithed rats, which enables us to evaluate the direct cardiovascular effects of drugs without interference from centrally mediated circulatory reflexes.
Methods
Male Wistar rats were pithed by inserting a stainless-steel rod into the spinal cord. Following median sternotomy, a flow probe was placed around the ascending aorta to measure aortic blood flow. Mean arterial pressure and cardiac output were maintained at approximately 100 mmHg and 50 mL min−1, respectively, with continuous infusion of norepinephrine. After 30 min inhalation of isoflurane (1%, or 2%) in oxygen, or only oxygen, adrenomedullin (1, 3, 10 or 30 μg kg−1) was administered intravenously.
Results
Adrenomedullin administration induced a transient increase followed by a persistent decrease in mean arterial pressure and cardiac output. Isoflurane (2%) significantly inhibited the initial increase in mean arterial pressure and the later decrease in mean arterial pressure and systemic vascular resistance.
Conclusion
Isoflurane inhibits adrenomedullin-induced vasodilation and positive inotropic effect in pithed rats. Isoflurane might inhibit the adrenomedullin receptor-mediated response, which is a common pathway for both actions.
Abundance and grazing impacts of krill, salps and herbivorous copepods were investigated in Antarctic waters along the 140°E meridian, south of Australia, during the summers of 2002 and 2003. North of the Southern Boundary of the Antarctic Circumpolar Current (SB-ACC), macrozooplankton comprised species of Salpa thompsoni and large herbivorous copepods, while the area south of the SB-ACC was numerically dominated by Euphausia superba or E. crystallorophias. North of the SB-ACC, the estimate of grazing impact revealed that krill, salps and copepods, Calanoides acutus, Calanus propinquus, Rhincalanus gigas and Metridia gerlachei, are able to remove a maximum of 37% of the total phytoplankton standing stock in early to midsummer, but grazing is negligible in late summer. The high grazing impact is attributed to the relatively high zooplankton abundance and low phytoplankton abundance. South of the SB-ACC, overall daily grazing impact of the three zooplankton groups was low and did not exceed 6% of the total phytoplankton standing stock throughout the investigation period. Present results indicate that the contribution of krill, salps and copepods varies seasonally as well as regionally across the SB-ACC. It seems that the carbon transport from surface to deep water by macro- and mesozooplankton in summer in this area is relatively large north of the SB-ACC but small south of the SB-ACC.
Three-dimensional magnetohydrodynamics of the Solar coronal plasma is investigated by numerical simulation, aiming to understand the mechanisms of the Solar flare onset. It is demonstrated by the simulations that the resistive tearing mode instability growing on the magnetic shear inversion layer can drive the large-scale eruption through the mutual excitation of double reconnections. It is also revealed that the instability is able to cause the magnetohydrodynamic energy relaxation, in which the typical sigmoidal structure is self-organized prior to the onset of eruption. The simulation results predict that both the formation of sigmoids and the onset of flares should occur around the electric current sheet where the magnetic shear is steeply reversed. It is consistent with the reversed-shear flare model and the vector magnetograph observations.
As of early $\sim$2010's, the Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA) space observatory will be launched. This actively cooled, cryogenic (4.5K), 3.5m telescope will operate in the mid and far infrared spectral regions. With its very high sensitivity, one of SPICA's aims will be the direct detection and characterization of extra-solar outer planets of nearby stars. The goal contrast ranges from $10^5$ to $10^6$ up to an angular separation of ${\sim}5$ arcsec. The relatively low angular resolution at MIR (5 to 20 $\mu$m) requires an efficient and robust coronagraphic mode working at cryogenic temperatures. In this presentation we describe several envisaged preliminary designs and assess their performance against the science goals and host telescope specifications. These are compared against numerical simulations and instrumental environment considerations, such as the need for an actively corrected wavefront.
From the view point of materials sciences, one of the central issues in organic thin film transistors (TFTs) is the interface between different materials inherent in the device structure. For example, the interface between organic semiconductors and electrodes controls the carrier injection, while the interface between organic semiconductors and gate insulators governs the trap and carrier densities. Here, we show that interface modification with self-assembeld monolayers (SAMs) using polar organosilane molecules offers novel functions in organic TFTs. SAMs on SiO2 gate dielectrics was found to the carrier density at the conduction channel, while the adsorbed SAMs molecules on metal electrodes causes an ambipolar operation in fullerene TFTs. These interface modification techniques, since they are low temperature processes, provide novel opportunities for improving device manufacturing processes.
Consumption of caffeine-rich beverages, which have diuretic properties, may decrease serum uric acid concentrations. We examined cross-sectionally the relationship of coffee and green tea consumption to serum uric acid concentrations in 2240 male self-defence officials who received a pre-retirement health examination at four hospitals of the Self-Defence Forces between 1993 and 1994. The mean levels of coffee and green tea consumption were 2·3 and 3·1 cups/d respectively. There was a clear inverse relationship between coffee consumption and serum uric acid concentration. When adjusted for hospital only, those consuming less than one cup of coffee daily had a mean serum uric acid concentration of 60 mg/l, while that of those drinking five or more cups of coffee daily was 56 mg/l (P < 0·0001). No such relationship was observed for green tea, another major dietary source of caffeine in Japan. The relationship between coffee consumption and serum uric acid concentration was independent of age, rank in the Self-Defence Forces, BMI, systolic blood pressure, serum creatinine, serum total cholesterol and serum HDL-cholesterol concentrations, smoking status, alcohol use, beer consumption and intake of dairy products. These findings suggest that coffee drinking may be associated with lower concentrations of serum uric acid, and further studies are needed to confirm the association.
A new type of Pb(Mgl1/3Nb2/3)O3 (PMN) based thin film decoupling capacitor for high speed digital circuits is presented. The thin film capacitor fabricated on a ceramic Al2O3 substrate with Ball Grid Array (BGA) terminations showed low impedance and low inductance characteristics in the 100MHz – 1GHz range. The sol-gel derived Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT) thin film showed a high dielectric constant (k=3000) with broad temperature dependence. The capacitor consists of a PMN-PT thin film (0.8 µm thickness), Au electrodes, and solder balls mounted on the upper electrode as terminals. Numerical simulations based on the Partial Element Equivalent Circuit (PEEC) model were conducted for the design of electrodes, which gives low inductance of the capacitor. It was shown that the thin film 1.2mm × 1.2mm capacitor mounted on a board exhibits high capacitance of 20 nF, low ESR of 100 mΩ, and low inductance of 135 pH. These values are in good agreement with the results of numerical simulations.
The deposition of W films by ArF laser-induced chemical-vapor deposition (LCVD) was investigated as a function of incident laser power, WF6 and H2 partial pressures, and substrate temperature. The deposition of W films by LCVD is discussed dividing that into two parts, thermal CVD (TCVD) and photon assisted CVD (PhCVD). The rate of PhCVD has been defined as the difference between the rates with and without laser irradiation. The reaction orders for PhCVD are 1, 0 with respect to WF6 and H2 partial pressures, respectively, and the rate linearly increases with increase in laser repetition rate. The activation energy in PhCVD is 0.17 eV. These facts indicate that, in LCVD, PhCVD takes place independently of TCVD and that the deposition rate in PhCVD is determined by the formation of F radicals in the dissociation of WF6 molecules by laser irradiation.
MOS capacitors with LCVD-W gates were fabricated and their characteristics were compared with those with sputtered-W gates. It was shown that the level of contamination due to mobile ions in the capacitor with the LCVD-W gate was extremely low.
Deposition of SiNx films by ArF laser induced chemical vapor deposition has been investigated. The films exhibit excellent electrical properties; the high breakdown voltage and the low fixed charge are the same as in films deposited by LPCVD, but the BHF etching rate of them is larger by a factor about 4 than that prepared by the plasma CVD. The diffusion length of the radicals contributing to the deposition was estimated from the distribution of the deposition rate as a function of the deposition parameters. The optical emission from the radicals produced by ArF laser irradiation was also studied. Using these results, we discuss the mechanism of the deposition.