We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We record $\binom{42}{2}+\binom{23}{2}+\binom{13}{2}=1192$ functional identities that, apart from being amazingly amusing in themselves, find application in the derivation of Ramanujan-type formulas for $1/\unicode[STIX]{x1D70B}$ and in the computation of mathematical constants.
We employ a modular method to establish the new result that two types of Eisenstein series to the tredecic base may be parametrised in terms of the eta quotients ${\it\eta}^{13}({\it\tau})/{\it\eta}(13{\it\tau})$ and ${\it\eta}^{2}(13{\it\tau})/{\it\eta}^{2}({\it\tau})$. The method can also be used to give short and simple proofs for the analogous cubic, quintic and septic theories.
A general theorem is stated that unifies 93 rational Ramanujan-type series for 1/π, 40 of which are believed to be new. Moreover, each series is shown to have a companion identity, thereby giving another 93 series, the majority of which are new.
Generatingfunctions are used to derive formulas for the number of representations of a positive integer by each of the quadratic forms x12+x22+x32+2x42, x12+2x22+2x32+2x42, x12+x22+2x32+4x42 and x12+2x22+4x32+4x42. The formulas show that the number of representations by each form is always positive. Some of the analogous results involving sums of triangular numbers are also given.
Weprove an observation associated with η3(τ)η3(7τ) whichis found on page 54 of Ramanujan’s Lost Notebook (S. Ramanujan, The Lost Notebook and Other Unpublished Papers (Narosa, New Delhi, 1988)). We then study functions of the type η3(aτ)η3(bτ) with a+b=8.
We give a simple proof of the identityThe proof uses only a few well-known properties of the cubic theta functions a(q), b(q) and c(q). We show this identity implies the interesting definite integral.
We give new proofs of some sum–to–product identities due to Blecksmith, Brillhart and Gerst, as well as some other such identities found recently by us.
A new, elementary proof of the Macdonald identities for An−1 using induction on n is given. Specifically, the Macdonald identity for An is deduced by multiplying the Macdonald identity for An−1 and n Jacobi triple product identities together.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.