We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The glomerular filtration rate (GFR), estimated from serum creatinine (SCr), is widely used in clinical practice for kidney function assessment, but SCr-based equations are limited by non-GFR determinants and may introduce inaccuracies across racial groups. Few studies have evaluated whether advanced modeling techniques enhance their performance.
Methods:
Using multivariable fractional polynomials (MFP), generalized additive models (GAM), random forests (RF), and gradient boosted machines (GBM), we developed four SCr-based GFR-estimating equations in a pooled data set from four cohorts (n = 4665). Their performance was compared to that of the refitted linear regression-based 2021 CKD-EPI SCr equation using bias (median difference between measured GFR [mGFR] and estimated GFR [eGFR]), precision, and accuracy metrics (e.g., P10 and P30, percentage of eGFR within 10% and 30% of mGFR, respectively) in a pooled validation data set from three additional cohorts (n = 2215).
Results:
In the validation data set, the greatest bias and lowest accuracy, were observed in Black individuals for all equations across subgroups defined by race, sex, age, and eGFR. The MFP and GAM equations performed similarly to the refitted CKD-EPI SCr equation, with slight improvements in P10 and P30 in subgroups including Black individuals and females. The GBM and RF equations demonstrated smaller biases, but lower accuracy compared to other equations. Generally, differences among equations were modest overall and across subgroups.
Conclusions:
Our findings suggest that advanced methods provide limited improvement in SCr-based GFR estimation. Future research should focus on integrating novel biomarkers for GFR estimation and improving the feasibility of GFR measurement.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Adults with intellectual disability experience increased rates of mental health disorders and adverse mental health outcomes.
Aim
Explore childhood risk factors associated with adverse mental health outcomes during adulthood as defined by high cost of care, use of psychotropic medication without a severe mental illness and psychiatric hospital admissions.
Method
Data on 137 adults with intellectual disability were collected through an intellectual disability community service in an inner London borough. Childhood modifiable and non-modifiable risk factors were extracted from records to map onto variables identified as potential risk factors. Logistic and linear regression models were employed to analyse their associations with adverse outcomes.
Results
We showed that the co-occurrence of intellectual disability with autism spectrum disorder and/or attention-deficit hyperactivity disorder (ADHD) were associated with psychotropic medication use and high-cost care packages. However, when challenging behaviour during childhood was added, ADHD and autism spectrum disorder were no longer significant and challenging behaviour better explained medication prescribing and higher cost care. In addition, the severity of intellectual disability was associated with higher cost care packages. Ethnicity (Black and mixed) also predicted higher cost of care.
Conclusions
Challenging behaviour during childhood emerged as a critical variable affecting outcomes in young adulthood and mediated the association between adult adverse mental health outcomes and co-occurring neurodevelopmental conditions, that is, ADHD and autism. These findings emphasise the need for effective early intervention strategies to address challenging behaviour during childhood. Such interventions for challenging behaviour will need to take into consideration autism and ADHD.
Generation of science-ready data from processed data products is one of the major challenges in next-generation radio continuum surveys with the Square Kilometre Array (SKA) and its precursors, due to the expected data volume and the need to achieve a high degree of automated processing. Source extraction, characterization, and classification are the major stages involved in this process. In this work we focus on the classification of compact radio sources in the Galactic plane using both radio and infrared images as inputs. To this aim, we produced a curated dataset of $\sim$20 000 images of compact sources of different astronomical classes, obtained from past radio and infrared surveys, and novel radio data from pilot surveys carried out with the Australian SKA Pathfinder. Radio spectral index information was also obtained for a subset of the data. We then trained two different classifiers on the produced dataset. The first model uses gradient-boosted decision trees and is trained on a set of pre-computed features derived from the data, which include radio-infrared colour indices and the radio spectral index. The second model is trained directly on multi-channel images, employing convolutional neural networks. Using a completely supervised procedure, we obtained a high classification accuracy (F1-score > 90%) for separating Galactic objects from the extragalactic background. Individual class discrimination performances, ranging from 60% to 75%, increased by 10% when adding far-infrared and spectral index information, with extragalactic objects, PNe and Hii regions identified with higher accuracies. The implemented tools and trained models were publicly released and made available to the radioastronomical community for future application on new radio data.
Clusters of galaxies have been found to host Mpc-scale diffuse, non-thermal radio emission in the form of central radio halos and peripheral relics. Turbulence and shock-related processes in the intra-cluster medium are generally considered responsible for the emission, though details of these processes are still not clear. The low surface brightness makes detection of the emission a challenge, but with recent surveys with high-sensitivity radio telescopes we are beginning to build large samples of these sources. The Evolutionary Map of the Universe (EMU) is a Southern Sky survey being performed by the Australian SKA Pathfinder (ASKAP) over the next few years and is well-suited to detect and characterise such emission. To assess prospects of the full survey, we have performed a pilot search of diffuse sources in 71 clusters from the Planck Sunyaev–Zeldovich (SZ) cluster catalogue (PSZ2) found in archival ASKAP observations. After re-imaging the archival data and performing both (u, v)-plane and image-plane angular scale filtering, we detect 21 radio halos (12 for the first time, excluding an additional six candidates), 11 relics (in seven clusters, and six for the first time, excluding a further five candidate relics), along with 12 other, unclassified diffuse radio sources. From these detections, we predict the full EMU survey will uncover up to $\approx 254$ radio halos and $\approx 85$ radio relics in the 858 PSZ2 clusters that will be covered by EMU. The percentage of clusters found to host diffuse emission in this work is similar to the number reported in recent cluster surveys with the LOw Frequency ARray (LOFAR) Two-metre Sky Survey [Botteon, et al. 2022a, A&A, 660, A78], suggesting EMU will complement similar searches being performed in the Northern Sky and provide us with statistically significant samples of halos and relics at the completion of the full survey. This work presents the first step towards large samples of the diffuse radio sources in Southern Sky clusters with ASKAP and eventually the SKA.
Modern grasslands on the Indian subcontinent, North and South America, and East Africa expanded widely during the late Miocene – earliest Pleistocene, likely in response to increasing aridity. Grasses utilizing the C4 photosynthetic pathway are more tolerant of high temperatures and dry conditions, and because they induce less C isotope fractionation than plants using the C3 pathway, the expansion of C4 grasslands can be traced through the δ13C of organic matter in soils and terrigenous marine sediments. We present a high-resolution record of the elemental and isotopic composition of bulk organic matter in the Nicobar Fan sediments from IODP Site U1480, off western Sumatra, to elucidate the timing and pace of the C3–C4 plant transition within the ∼1.5 × 106 km2 catchments of the Ganges/Brahmaputra river system, which continue to supply voluminous Himalaya-derived sediments to the Bay of Bengal. Using a multi-proxy approach to correct for the effects of marine organic matter and account for major sources of uncertainty, we recognize two phases of C4 expansion starting at ∼7.1 Ma, and at ∼3.5 Ma, with a stepwise transition at ∼2.5 Ma. These intervals appear to coincide with periods of Indian Ocean and East Asian monsoon intensification, as well as the expansion of Northern Hemisphere glaciation starting at ∼2.7 Ma. Our data from the deep sea for a multi-phased C4 expansion on the Indian subcontinent are in agreement with terrestrial data from the Indian Siwaliks.
The brick kilns in India are associated with extremely low pay, poor working conditions and a lack of regulation. Equids, however, may provide a route out of poverty by enabling workers to access a higher income. The relatively higher financial returns from healthy equids could also motivate welfare improvements. We used a mixed-methods approach including livelihoods questionnaires, semi-structured interviews and welfare assessments to investigate the links between poverty, equid ownership and equid welfare in the brick kilns of Ahmedabad, India. Whilst equid owners earned more than non-owners during the kiln season, the opposite trend was found for these workers for work conducted outside of the kilns during the off-season. Equid ownership was, however, strongly influenced by social factors and, within certain communities, equid ownership may be the only viable escape from extreme poverty. In terms of welfare, equid behaviour was better for owners with better financial security, likely due to the availability of resources. Equid health improved with longevity of ownership, suggesting that owners who view working with their equids as a long-term partnership are more likely to ensure their equids are kept in good health. For stakeholders aiming to improve both human health and equid welfare, a ‘one welfare’ approach which values the intrinsic connections between poverty and both equid ownership and equid welfare could greatly increase success.
Seeman, Morris, and Summers misrepresent or misunderstand the arguments we have made, as well as their own previous work. Here, we correct these inaccuracies. We also reiterate our support for hypothesis-driven and evidence-based research.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers $270 \,\mathrm{deg}^2$ of an area covered by the Dark Energy Survey, reaching a depth of 25–30 $\mu\mathrm{Jy\ beam}^{-1}$ rms at a spatial resolution of $\sim$11–18 arcsec, resulting in a catalogue of $\sim$220 000 sources, of which $\sim$180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
In 1978, Bracewell suggested the technique of nulling interferometry to directly image exoplanets which would enable characterisation of their surfaces, atmospheres, weather, and possibly determine their capacity to host life. The contrast needed to discriminate starlight reflected by a terrestrial-type planet from the glare of its host star lies at or beyond a forbidding $10^{-10}$ for an exo-Earth in the habitable zone around a Sun-like star at near-infrared wavelengths, necessitating instrumentation with extremely precise control of the light. Guided Light Interferometric Nulling Technology (GLINT) is a testbed for new photonic devices conceived to overcome the challenges posed by nulling interferometry. At its heart, GLINT employs a single-mode nulling photonic chip fabricated by direct-write technology to coherently combine starlight from an arbitrarily large telescope at 1 550 nm. It operates in combination with an actuated segmented mirror in a closed-loop control system, to produce and sustain a deep null throughout observations. The GLINT South prototype interfaces the 3.9-m Anglo-Australian Telescope and was tested on a sample of bright Mira variable stars. Successful and continuous starlight injection into the photonic chip was achieved. A statistical model of the data was constructed, enabling a data reduction algorithm to retrieve contrast ratios of about $10^{-3}$. As a byproduct of this analysis, stellar angular diameters that were below the telescope diffraction limit ($\sim$100 mas) were recovered with 1$\sigma$ accuracy and shown to be in agreement with literature values despite working in the seeing-limited regime. GLINT South serves as a demonstration of the capability of direct-write photonic technology for achieving coherent, stable nulling of starlight, which will encourage further technological developments towards the goal of directly imaging exoplanets with future large ground based and space telescopes.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
We have found a class of circular radio objects in the Evolutionary Map of the Universe Pilot Survey, using the Australian Square Kilometre Array Pathfinder telescope. The objects appear in radio images as circular edge-brightened discs, about one arcmin diameter, that are unlike other objects previously reported in the literature. We explore several possible mechanisms that might cause these objects, but none seems to be a compelling explanation.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
Fungal endocarditis classically involves dense heterogenous vegetations. However, several patients with fungal infections were noted to have myocardial changes ranging from focal brightening to nodular thickening of chordae or papillary muscles. This study evaluates whether these findings are associated with fungal infections.
Methods:
In a retrospective case–control study, paediatric inpatients with fungal infections (positive blood, urine, or catheter tip culture) in a 5-year period were matched 1:1 to inpatients without positive fungal cultures. Echocardiograms were scored on a 5-point scale by two independent readers for presence of myocardial brightenings, nodular thickenings, and vegetations. Clinical data were compared.
Results:
Of 67 fungal cases, positive culture sites included blood (n = 44), vascular catheter tip (n = 7), and urine (n = 29); several had multiple positive sites. “Positive” echo findings (score ≥ 2+) were more frequent in the Fungal Group (33 versus 18%, p = 0.04). Fungal Group patients with “positive” versus “negative” echo findings had similar proportion of bacterial infections. Among fungal cases, those with “positive” echo findings had longer hospital length of stay than cases with “negative” echos (median 58 versus 40 days, p = 0.03) but no difference in intensive care unit admission, extracorporeal membranous oxygenation support, or mortality.
Conclusions:
Myocardial and papillary muscle brightening with nodular thickening on echocardiogram appear to be associated with fungal infections. There may be prognostic implications of these findings as patients with “positive” echo have longer length of stay. Further studies are needed to better understand the mechanism and temporal progression of these changes and determine the prognostic value of this scoring system.
We present a detailed analysis of the radio galaxy PKS $2250{-}351$, a giant of 1.2 Mpc projected size, its host galaxy, and its environment. We use radio data from the Murchison Widefield Array, the upgraded Giant Metre-wavelength Radio Telescope, the Australian Square Kilometre Array Pathfinder, and the Australia Telescope Compact Array to model the jet power and age. Optical and IR data come from the Galaxy And Mass Assembly (GAMA) survey and provide information on the host galaxy and environment. GAMA spectroscopy confirms that PKS $2250{-}351$ lies at $z=0.2115$ in the irregular, and likely unrelaxed, cluster Abell 3936. We find its host is a massive, ‘red and dead’ elliptical galaxy with negligible star formation but with a highly obscured active galactic nucleus dominating the mid-IR emission. Assuming it lies on the local M–$\sigma$ relation, it has an Eddington accretion rate of $\lambda_{\rm EDD}\sim 0.014$. We find that the lobe-derived jet power (a time-averaged measure) is an order of magnitude greater than the hotspot-derived jet power (an instantaneous measure). We propose that over the lifetime of the observed radio emission (${\sim} 300\,$Myr), the accretion has switched from an inefficient advection-dominated mode to a thin disc efficient mode, consistent with the decrease in jet power. We also suggest that the asymmetric radio morphology is due to its environment, with the host of PKS $2250{-}351$ lying to the west of the densest concentration of galaxies in Abell 3936.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.