We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study p-Wasserstein spaces over the branching spaces $\mathbb {R}^2$ and $[-1,1]^2$ equipped with the maximum norm metric. We show that these spaces are isometrically rigid for all $p\geq 1,$ meaning that all isometries of these spaces are induced by isometries of the underlying space via the push-forward operation. This is in contrast to the case of the Euclidean metric since with that distance the $2$-Wasserstein space over $\mathbb {R}^2$ is not rigid. Also, we highlight that the $1$-Wasserstein space is not rigid over the closed interval $[-1,1]$, while according to our result, its two-dimensional analog, the closed unit ball $[-1,1]^2$ with the more complicated geodesic structure is rigid.
The aim of this paper is to develop an approach to obtain self-adjoint extensions of symmetric operators acting on anti-dual pairs. The main advantage of such a result is that it can be applied for structures not carrying a Hilbert space structure or a normable topology. In fact, we will show how hermitian extensions of linear functionals of involutive algebras can be governed by means of their induced operators. As an operator theoretic application, we provide a direct generalization of Parrott’s theorem on contractive completion of 2 by 2 block operator-valued matrices. To exhibit the applicability in noncommutative integration, we characterize hermitian extendibility of symmetric functionals defined on a left ideal of a $C^{\ast }$-algebra.
Several Lebesgue-type decomposition theorems in analysis have a strong relation to the operation called the parallel sum. The aim of this paper is to investigate this relation from a new point of view. Namely, using a natural generalization of Arlinskii's approach (which identifies the singular part as a fixed point of a single-variable map) we prove the existence of a Lebesgue-type decomposition for non-negative sesquilinear forms. As applications, we also show how this approach can be used to derive analogous results for representable functionals, non-negative finitely additive measures, and positive definite operator functions. The focus is on the fact that each theorem can be proved with the same completely elementary method.
The main purpose of this paper is to investigate some natural problems regarding the order structure of representable functionals on *-algebras. We describe the extreme points of order intervals, and give a non-trivial sufficient condition to decide whether or not the infimum of two representable functionals exists. To this aim, we offer a suitable approach to the Lebesgue decomposition theory, which is in complete analogy with the one developed by Ando in the context of positive operators. This tight analogy allows to invoke Ando's results to characterize uniqueness of the decomposition, and solve the infimum problem over certain operator algebras.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.