We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Planar linear flows are a one-parameter family, with the parameter $\hat {\alpha }\in [-1,1]$ being a measure of the relative magnitudes of extension and vorticity; $\hat {\alpha } = -1$, $0$ and $1$ correspond to solid-body rotation, simple shear flow and planar extension, respectively. For a neutrally buoyant spherical drop in a hyperbolic planar linear flow with $\hat {\alpha }\in (0,1]$, the near-field streamlines are closed for $\lambda \gt \lambda _c = 2 \hat {\alpha } / (1 - \hat {\alpha })$, $\lambda$ being the drop-to-medium viscosity ratio; all streamlines are closed for an ambient elliptic linear flow with $\hat {\alpha }\in [-1,0)$. We use both analytical and numerical tools to show that drop deformation, as characterized by a non-zero capillary number ($Ca$), destroys the aforementioned closed-streamline topology. While inertia has previously been shown to transform closed Stokesian streamlines into open spiralling ones that run from upstream to downstream infinity, the streamline topology around a deformed drop, for small but finite $Ca$, is more complicated. Only a subset of the original closed streamlines transforms to open spiralling ones, while the remaining ones densely wind around a configuration of nested invariant tori. Our results contradict previous efforts pointing to the persistence of the closed streamline topology exterior to a deformed drop, and have important implications for transport and mixing.
We analyse the motion of a flagellated bacterium in a two-fluid medium using slender body theory. The two-fluid model is useful for describing a body moving through a complex fluid with a microstructure whose length scale is comparable to the characteristic scale of the body. This is true for bacterial motion in biological fluids (entangled polymer solutions), where the entanglement results in a porous microstructure with typical pore diameters comparable to or larger than the flagellar bundle diameter, but smaller than the diameter of the bacterial head. Thus, the polymer and solvent satisfy different boundary conditions on the flagellar bundle and move with different velocities close to it. This gives rise to a screening length $L_B$ within which the fluids exchange momentum and the relative velocity between the two fluids decays. In this work, both the solvent and polymer of the two-fluid medium are modelled as Newtonian fluids with different viscosities $\mu _s$ and $\mu _p$ (viscosity ratio $\lambda = \mu _p/\mu _s$), thereby capturing the effects solely introduced by the microstructure of the complex fluid. From our calculations, we observe an increased drag anisotropy for a rigid, slender flagellar bundle moving through this two-fluid medium, resulting in an enhanced swimming velocity of the organism. The results are sensitive to the interaction between the bundle and the polymer, and we discuss two physical scenarios corresponding to two types of interaction. Our model provides an explanation for the experimentally observed enhancement of swimming velocity of bacteria in entangled polymer solutions and motivates further experimental investigations.
The Madayi clay deposit consists of a thick sequence of residual white kaolinitic clay underlying the sedimentary Warkallai Formation, which includes gray carbonaceous kaolinitic clays, lignite, ferruginous kaolinitic clays, laterite and bauxite with ferricretes. The conditions of clay genesis and the economic significance of the major residual kaolin seam have been investigated. The raw clay and <2 μm fractions were subjected to X-ray diffraction (XRD), chemical analysis, differential thermal analysis (DTA), Fourier transform infrared (FTIR) spectroscopic and scanning electron microscopic (SEM) studies. The firing behavior of the <45 μm fraction of the major residual clay sequence (L), was investigated systematically to determine the potential industrial use of this kaolin.
Geochemical and morphological studies of different strata indicate the following conditions for clay formation. (1) intense lateritized weathering conditions for kaolinization of the residual white clay from parent quartzo-felspathic mica-gneiss. (2) reducing environment for the gray carbonaceous layers; an. (3) oxidizing environment for the uppermost hematite-rich ferruginous clay. Pyrite/marcasite enriched detrital gray carbonaceous clay shows two distinct environments for in situ kaolinite crystallization. (1) within plant fossils influenced by the high organic content and FeS2 leaching; and (2) precipitation from solution.
Incomplete kaolinization of white residual clay is evident from the presence of pyrophyllite, muscovite with lenticular cleavage void and a lower percentage of fines (<2 μm). The plant fossils from the uppermost portion of residual clay show pyrite mineralization. The Hinckley Index, FTIR and rare earth analysis point towards diverse geochemical environments of deposition and technological evaluation indicates its suitability for application in the ceramics industry.
Prospect Theory proposed that the (dis)utility of losses is always more than gains due to a phenomena called ‘loss-aversion’, a result obtained in multiple later studies over the years. However, some researchers found reversed or no loss-aversion for affective judgments of small monetary amounts but, those findings have been argued to stem from the way gains versus losses were measured. Thus, it was not clear whether loss-aversion does not show with affective judgments for smaller magnitudes, or it is a measurement error. This paper addresses the debate concerning loss-aversion (in the prospect theoretic sense) and judgments about the intensity of gains and losses. We measured affective prospective judgments for monetary amounts using measurement scales that have been argued to be suitable for measuring loss-aversion and hence rule out any explanations regarding measurement. Both in a gambling scenario (Experiments 1 and 2) and in the context of fluctuating prices (Experiments 3a and 3b), potential losses never loomed larger than gains for low magnitudes, indicating that it is not simply a measurement error. Moreover, for the same participant, loss aversion was observable at high magnitudes. Further, we show that loss-aversion disappears even for higher monetary values, if contextually an even larger anchor is provided. The results imply that Prospect Theory’s value function is contextually dependent on magnitudes.
We introduce incubators as an organizational form intended to facilitate entrepreneurship. The theorizing and research on incubators have been primarily anchored in market failure perspective and carry over the assumptions about a free market economy, mostly implicitly into the empirical work. This ignores the influence of the institutional context and obscures processes that may come into play in emerging economies like India. Using Scott's model (2008) of institutional context, we argue how the institutional context provides a complementary perspective that may reveal a richer picture of incubator operation in emerging economies. We illustrate this in the case of academic incubators in India.
We have assembled a new sample of some of the most FIR-luminous galaxies in the Universe and have imaged them in 1.1 mm dust emission and measured their redshifts 1 < z < 4 via CO emission lines using the 32-m Large Millimeter Telescope / Gran Telescopio Milimétrico (LMT/GTM). Our sample of 31 submm galaxies (SMGs), culled from the Planck and Herschel all-sky surveys, includes 14 of the 21 most luminous galaxies known, with LFIR > 1014L⊙ and SFR > 104M⊙/yr. These extreme inferred luminosities – and multiple / extended 1.1 mm images – imply that most or all are strongly gravitationally lensed, with typical magnification μ ~ 10 × . The gravitational lensing provides two significant benefits: (1) it boosts the S/N, and (2) it allows investigation of star formation and gas processes on sub-kpc scales.
A new species of Impatiens L. (Balsaminaceae) from Wayanad District, Kerala, India, Impatiens mohana Ratheesh, Sujana & Anil, is described, illustrated and compared with I. modesta Wight.
The availability of restriction fragment length polymorphisms (RFLPs) would be useful for studying the extent of diversity among morphologically indistinguishable populations of filarial parasites. Such polymorphisms may be useful in correlating various physiological and clinical differences with parasite heterogeneity. In order to identify such RFLPs, we isolated DNA from microfilaria of 6 filarial species (Acanthocheilonema viteae, Brugia malayi, Brugia pahangi, Dirofilaria immitis, Litomosoides carinii and Setaria digitatum), digested the DNA with several restriction endonucleases, prepared Southern blots and probed with 32P-labelled DNA probes. The patterns of fragments generated using two restriction endonucleases, Mbo I and Tag I, in combination with two probes, rDNA from the free-living soil nematode Cenorhabditis elegans, and pBM103, an anonymous DNA probe from B. malayi, unequivocally distinguish between all 6 of the species. To ensure that the differences we observed between the species represent true interspecies variation rather than fortuitous individual variations we analysed DNA from several individual B. malayi and B. pahangi worms. The individual B. malayi worms demonstrated restriction profiles that were invariant, as did the individual B. pahangi worms, demonstrating that the differences we observed were true interspecies variations.
Investigations of a high resolution X-ray emission spectrum in the range 0.66–0.75 nm obtained by irradiating a Germanium target with high-power p-polarized, 40 picosecond laser radiation at 532 nm wavelength was done. Spectra in the wavelength region of 2l-4l′ and 2l-5l′ L-shell transitions in F-like, Ne-like and Na-like germanium ions were recorded using the FSSR-2D spectrometer equipped with a spherically bent quartz crystal with a spectral resolution λ/Δλ better than 5000. Spectral lines were compared with theoretical values obtained using the LANL plasma kinetic code ATOMIC. Fair agreement between experimental and theoretical spectral lines has been observed, which allowed to measure enough high bulk electron temperature values of 560 eV and electron density of ∼1021 cm−3 in Ge plasma irradiated by rather small commercial high repetition rate Nd:YAG laser system.
Experiments on reverse transition were conducted in two-dimensional accelerated incompressible turbulent boundary layers. Mean velocity profiles, longitudinal velocity fluctuations $\tilde{u}^{\prime}(=(\overline{u^{\prime 2}})^{\frac{1}{2}})$ and the wall-shearing stress (TW) were measured. The mean velocity profiles show that the wall region adjusts itself to laminar conditions earlier than the outer region. During the reverse transition process, increases in the shape parameter (H) are accompanied by a decrease in the skin friction coefficient (Cf). Profiles of turbulent intensity (u’2) exhibit near similarity in the turbulence decay region. The breakdown of the law of the wall is characterized by the parameter\[\Delta_p (=\nu[dP/dx]/\rho U^{*3}) = - 0.02,\]where U* is the friction velocity. Downstream of this region the decay of $\tilde{u}^{\prime}$ fluctuations occurred when the momentum thickness Reynolds number (R) decreased roughly below 400.
We positionally match sources observed by the Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (2MASS), and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. Practically all 2MASS sources are matched to an SDSS source within 2 arcsec; ~11% of them are optically resolved galaxies and the rest are dominated by stars. About 1/3 of FIRST sources are matched to an SDSS source within 2 arcsec; ~80% of these are galaxies and the rest are dominated by quasars. Based on these results, we project that by the completion of these surveys the matched samples will include about 107 stars and 106 galaxies observed by both SDSS and 2MASS, and about 250,000 galaxies and 50,000 quasars observed by both SDSS and FIRST. Here we present a preliminary analysis of the optical, infrared and radio properties for the extragalactic sources from the matched samples. In particular, we find that the fraction of quasars with stellar colors missed by the SDSS spectroscopic survey is probably not larger than ~10%, and that the optical colors of radio-loud quasars are ~0.05 mag. redder (with 4σ significance) than the colors of radio-quiet quasars.
Growth of epitaxial Si epitaxial overlayers on lattice matched (LaxY1-x)2O3/Si (LaYO/Si) structures has been investigated by high resolution transmission electron microscopy and reflection high energy electron diffraction. Results indicate that smooth two-dimensional near lattice-matched LaYO (111) films can be grown on Si (111) substrates. However, subsequent Si epitaxial growth on the LaYO/Si structures nucleates as three-dimensional islands, a consequence of the high energy of the Si overlayer/LaYO interface. We have investigated the effect of growth temperature on the microstructure of the Si overlayers. Higher temperatures resulted in the nucleation of large faceted islands and rough overlayers while lower temperatures result in smaller islands that coalesce at an early stage and produce smoother films. In addition, formation of planar defects in these films is attributed to stacking errors on the {111} facets of initial Si islands with lower temperatures resulting in a higher density of stacking faults and twins.
This work investigates the retention and transport of chemical species and abrasive particles during chemical-mechanical polishing (CMP) of copper (Cu). “Slurry step-flow” experiments, in which the concentrations of the chemicals and abrasives in the slurry are altered in steps during polishing were conducted with hydrogen peroxide (H2O2)/glycine based slurries. Two different pads, Suba-500 and IC 1400 (with k grooves), were compared in terms of their slurry retention and transport characteristics. With these experiments, it has been shown that both the abrasives and chemicals are constantly replaced during a typical CMP process. Better polishing performance of the IC 1400 over Suba 500 is a result of improved transport of the chemicals and the abrasives between the wafer/pad interface.
GaP islands grown on selected surfaces of Si and their coalescence behavior have been investigated by transmission electron microscopy. These layers were grown by chemical beam epitaxy. A number of significant observations emerge from this study. First, planar defect formation has been shown to be related to stacking errors on the smaller P-terminated {111} facets of GaP islands. Amongst the four orientations, (111) epilayers have a higher density of stacking faults and first order twins because of more P-terminated {111} facets per island. Second, multiple twinning on exposed {111} facets can produce tilt boundaries and irregular growths when islands coalesce. Third, inversion domain boundaries lying on {110} planes have been shown to form during GaP island coalescence across monatomic steps on (001) Si. Image simulations have been performed to show that these boundaries can be seen in high resolution lattice images and the observed contrast is attributed to the presence of wrong Ga-Ga and P-P bonds at the inversion boundary.
Rapid thermal processing is fast emerging as a vital low thermal budget processing technique. Use of photons of wavelengths less than 800 nm in conjunction with infrared and visible photons in RTP resulted in the reduction of microscopic defects and processing time. Screen printed back surface field (BSF) contacts and ohmic contacts which are an integral part of solar cells were processed and Schottky barrier diodes were made. Cycle time was reduced from 172 see's to 108 see's in the case of back surface field contacts and from 162 see's to 122 see's for the ohmic contacts. The Schottky diodes were characterized for electrical data. The structural properties of the metal silicon interface have direct correlation with the electrical properties of the device.
We define, as in [2], a random knock-out tournament with n players as a vector (m1, m2, …, mk) of positive integers satisfying
1
On the first round of the tournament 2m1 players, chosen at random, are paired off randomly; the remaining n — 2m1 players have a "bye". The m1 losers are knocked out, leaving a tournament n—m1 players with vector (m2, m3, …, mk).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.