We study optimal dimensionless inequalities
\begin{equation*} \|f\|_{\textrm{U}^k} \leqslant \|f\|_{\ell^{p_{k,n}}} \end{equation*}
that hold for all functions
$f\colon\mathbb{Z}^d\to\mathbb{C}$ supported in
$\{0,1,\ldots,n-1\}^d$ and estimates
\begin{equation*} \|\mathbb{1}_A\|_{\textrm{U}^k}^{2^k}\leqslant |A|^{t_{k,n}} \end{equation*}
that hold for all subsets A of the same discrete cubes. A general theory, analogous to the work of de Dios Pont, Greenfeld, Ivanisvili, and Madrid, is developed to show that the critical exponents are related by
$p_{k,n} t_{k,n} = 2^k$. This is used to prove the three main results of the article: