We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While mentors can learn general strategies for effective mentoring, existing mentorship curricula do not comprehensively address how to support marginalized mentees, including LGBTQIA+ mentees. After identifying best mentoring practices and existing evidence-based curricula, we adapted these to create the Harvard Sexual and Gender Minority Health Mentoring Program. The primary goal was to address the needs of underrepresented health professionals in two overlapping groups: (1) LGBTQIA+ mentees and (2) any mentees focused on LGBTQIA+ health. An inaugural cohort (N = 12) of early-, mid-, and late-career faculty piloted this curriculum in spring 2022 during six 90-minute sessions. We evaluated the program using confidential surveys after each session and at the program’s conclusion as well as with focus groups. Faculty were highly satisfied with the program and reported skill gains and behavioral changes. Our findings suggest this novel curriculum can effectively prepare mentors to support mentees with identities different from their own; the whole curriculum, or parts, could be integrated into other trainings to enhance inclusive mentoring. Our adaptations are also a model for how mentorship curricula can be tailored to a particular focus (i.e., LGBTQIA+ health). Ideally, such mentor trainings can help create more inclusive environments throughout academic medicine.
Background: Sex differences in treatment response to intravenous thrombolysis (IVT) are poorly characterized. We compared sex-disaggregated outcomes in patients receiving IVT for acute ischemic stroke in the Alteplase compared to Tenecteplase (AcT) trial, a Canadian multicentre, randomised trial. Methods: In this post-hoc analysis, the primary outcome was excellent functional outcome (modified Rankin Score [mRS] 0-1) at 90 days. Secondary and safety outcomes included return to baseline function, successful reperfusion (eTICI≥2b), death and symptomatic intracerebral hemorrhage. Results: Of 1577 patients, there were 755 women and 822 men (median age 77 [68-86]; 70 [59-79]). There were no differences in rates of mRS 0-1 (aRR 0.95 [0.86-1.06]), return to baseline function (aRR 0.94 [0.84-1.06]), reperfusion (aRR 0.98 [0.80-1.19]) and death (aRR 0.91 [0.79-1.18]). There was no effect modification by treatment type on the association between sex and outcomes. The probability of excellent functional outcome decreased with increasing onset-to-needle time. This relation did not vary by sex (pinteraction 0.42). Conclusions: The AcT trial demonstrated comparable functional, safety and angiographic outcomes by sex. This effect did not differ between alteplase and tenecteplase. The pragmatic enrolment and broad national participation in AcT provide reassurance that there do not appear to be sex differences in outcomes amongst Canadians receiving IVT.
The purpose of this scoping review is two-fold: to assess the literature that quantitatively measures outcomes of mentorship programs designed to support research-focused junior faculty and to identify mentoring strategies that promote diversity within academic medicine mentoring programs.
Methods:
Studies were identified by searching Medline using MESH terms for mentoring and academic medicine. Eligibility criteria included studies focused on junior faculty in research-focused positions, receiving mentorship, in an academic medical center in the USA, with outcomes collected to measure career success (career trajectory, career satisfaction, quality of life, research productivity, leadership positions). Data were abstracted using a standardized data collection form, and best practices were summarized.
Results:
Search terms resulted in 1,842 articles for title and abstract review, with 27 manuscripts meeting inclusion criteria. Two studies focused specifically on women, and four studies focused on junior faculty from racial/ethnic backgrounds underrepresented in medicine. From the initial search, few studies were designed to specifically increase diversity or capture outcomes relevant to promotion within academic medicine. Of those which did, most studies captured the impact on research productivity and career satisfaction. Traditional one-on-one mentorship, structured peer mentorship facilitated by a senior mentor, and peer mentorship in combination with one-on-one mentorship were found to be effective strategies to facilitate research productivity.
Conclusion:
Efforts are needed at the mentee, mentor, and institutional level to provide mentorship to diverse junior faculty on research competencies and career trajectory, create a sense of belonging, and connect junior faculty with institutional resources to support career success.
Enhancing diversity in the scientific workforce is a long-standing issue. This study uses mixed methods to understand the feasibility, impact, and priority of six key strategies to promote diverse and inclusive training and contextualize the six key strategies across Clinical and Translational Science Awards (CTSAs) Program Institutions.
Methods:
Four breakout sessions were held at the NCATS 2020 CTSA Program annual meeting focused on diversity, equity, and inclusion (DEI) efforts. This paper focuses on the breakout session for Enhancing DEI in Translational Science Training Programs. Data were analyzed using a mixed methods convergent approach. The quantitative strand includes the online polling results. The qualitative strand includes the breakout session and the chat box in response to the training presentation.
Results:
Across feasibility, impact, and priority questions, prioritizing representation ranked number 1. Building partnerships ranked number 2 in feasibility and priority, while making it personal ranked number 2 for impact. Across each strategy, rankings supported the qualitative data findings in feasibility through shared experiences, impact in the ability to increase DEI, and priority rankings in comparison to the other strategies. No divergence was found across quantitative and qualitative data findings.
Conclusion:
Findings provide robust support for prioritizing representation as a number one strategy to focus on in training programs. Specifically, this strategy can be operationalized through integration of community representation, diversity advocates, and adopting a holistic approach to recruiting a diverse cadre of scholars into translational science training programs at the national level across CTSAs.
Diversity, equity, and inclusion (DEI) in clinical and translational science (CTS) are paramount to driving innovation and increasing health equity. One important area for improving diversity is among trainees in CTS programs. This paper reports on findings from a special session at the November 2020 Clinical and Translational Science Award (CTSA) national program meeting that focused on advancing diversity and inclusion within CTS training programs.
Methods:
Using qualitative content analysis, we identified approaches brought forth to increase DEI in KL2 career development and other training programs aimed at early-stage CTS investigators, beyond the six strategies put forth to guide the breakout session (prioritizing representation, building partnerships, making it personal, designing program structure, improving through feedback, and winning endorsement). We used an inductive qualitative content analysis approach to identify themes from a transcript of the panel of KL2 program leaders centered on DEI in training programs.
Results:
We identified four themes for advancing DEI within CTS training programs: 1) institutional buy-in; 2) proactive recruitment efforts; 3) an equitable application process; and 4) high-quality, diverse mentorship.
Conclusion:
Implementing these strategies in CTS and other training programs will be an important step for advancing DEI. However, processes need to be established to evaluate the implementation and effectiveness of these strategies through continuous quality improvement, a key component of the CTSA program. Training programs within the CTSA are well-positioned to be leaders in this critical effort to increase the diversity of the scientific workforce.
Seven half-day regional listening sessions were held between December 2016 and April 2017 with groups of diverse stakeholders on the issues and potential solutions for herbicide-resistance management. The objective of the listening sessions was to connect with stakeholders and hear their challenges and recommendations for addressing herbicide resistance. The coordinating team hired Strategic Conservation Solutions, LLC, to facilitate all the sessions. They and the coordinating team used in-person meetings, teleconferences, and email to communicate and coordinate the activities leading up to each regional listening session. The agenda was the same across all sessions and included small-group discussions followed by reporting to the full group for discussion. The planning process was the same across all the sessions, although the selection of venue, time of day, and stakeholder participants differed to accommodate the differences among regions. The listening-session format required a great deal of work and flexibility on the part of the coordinating team and regional coordinators. Overall, the participant evaluations from the sessions were positive, with participants expressing appreciation that they were asked for their thoughts on the subject of herbicide resistance. This paper details the methods and processes used to conduct these regional listening sessions and provides an assessment of the strengths and limitations of those processes.
Herbicide resistance is ‘wicked’ in nature; therefore, results of the many educational efforts to encourage diversification of weed control practices in the United States have been mixed. It is clear that we do not sufficiently understand the totality of the grassroots obstacles, concerns, challenges, and specific solutions needed for varied crop production systems. Weed management issues and solutions vary with such variables as management styles, regions, cropping systems, and available or affordable technologies. Therefore, to help the weed science community better understand the needs and ideas of those directly dealing with herbicide resistance, seven half-day regional listening sessions were held across the United States between December 2016 and April 2017 with groups of diverse stakeholders on the issues and potential solutions for herbicide resistance management. The major goals of the sessions were to gain an understanding of stakeholders and their goals and concerns related to herbicide resistance management, to become familiar with regional differences, and to identify decision maker needs to address herbicide resistance. The messages shared by listening-session participants could be summarized by six themes: we need new herbicides; there is no need for more regulation; there is a need for more education, especially for others who were not present; diversity is hard; the agricultural economy makes it difficult to make changes; and we are aware of herbicide resistance but are managing it. The authors concluded that more work is needed to bring a community-wide, interdisciplinary approach to understanding the complexity of managing weeds within the context of the whole farm operation and for communicating the need to address herbicide resistance.
Field experiments were conducted at four locations in Kansas in 1999 and 2000 to evaluate grain sorghum response to simulated drift rates of four herbicides. Imazethapyr, glufosinate, glyphosate, and sethoxydim were applied at 1/3, 1/10, 1/33, and 1/100 of the use rate when plants were 10 to 20 cm tall. Visible crop injury increased as rates of each herbicide increased. Glyphosate and imazethapyr caused the most injury and glufosinate the least. Data show that some plants that were significantly injured 2 wk after treatment (WAT) recovered 8 WAT. However, some plants that received the highest rate of imazethapyr or glyphosate died. Grain sorghum yields were reduced only when injury was severe. This research showed that the potential for sorghum injury from off-target herbicide drift is greater from imazethapyr and glyphosate than from sethoxydim or glufosinate.
We investigated the physiology of two closely related albatross species relative to their breeding strategy: black-browed albatrosses (Thalassarche melanophris) breed annually, while grey-headed albatrosses (T. chrysostoma) breed biennially. From observations of breeding fate and blood samples collected at the end of breeding in one season and feather corticosterone levels (fCort) sampled at the beginning of the next breeding season, we found that in both species some post-breeding physiological parameters differed according to breeding outcome (successful, failed, deferred). Correlations between post-breeding physiology and fCort, and links to future breeding decisions, were examined. In black-browed albatrosses, post-breeding physiology and fCort were not significantly correlated, but fCort independently predicted breeding decision the next year, which we interpret as a possible migratory carry-over effect. In grey-headed albatrosses, post-breeding triglyceride levels were negatively correlated with fCort, but only in females, which we interpret as a potential cost of reproduction. However, this potential cost did not carry-over to future breeding in the grey-headed albatrosses. None of the variables predicted future breeding decisions. We suggest that biennial breeding in the grey-headed albatrosses may have evolved as a strategy to buffer against the apparent susceptibility of females to negative physiological costs of reproduction. Future studies are needed to confirm this.
The cerebral mechanisms of traits associated with depersonalization-derealization disorder (DPRD) remain poorly understood.
Method
Happy and sad emotion expressions were presented to DPRD and non-referred control (NC) subjects in an implicit event-related functional magnetic resonance imaging (fMRI) design, and correlated with self report scales reflecting typical co-morbidities of DPRD: depression, dissociation, anxiety, somatization.
Results
Significant differences between the slopes of the two groups were observed for somatization in the right temporal operculum (happy) and ventral striatum, bilaterally (sad). Discriminative regions for symptoms of depression were the right pulvinar (happy) and left amygdala (sad). For dissociation, discriminative regions were the left mesial inferior temporal gyrus (happy) and left supramarginal gyrus (sad). For state anxiety, discriminative regions were the left inferior frontal gyrus (happy) and parahippocampal gyrus (sad). For trait anxiety, discriminative regions were the right caudate head (happy) and left superior temporal gyrus (sad).
Discussion
The ascertained brain regions are in line with previous findings for the respective traits. The findings suggest separate brain systems for each trait.
Conclusion
Our results do not justify any bias for a certain nosological category in DPRD.
We report on the electrical and structural properties of boron-doped diamond tips commonly used for in-situ electromechanical testing during nanoindentation. The boron dopant environment, as evidenced by cathodoluminescence (CL) microscopy, revealed significantly different boron states within each tip. Characteristic emission bands of both electrically activated and nonelectrically activated boron centers were identified in all boron-doped tips. Surface CL mapping also revealed vastly different surface properties, confirming a high amount of nonelectrically activated boron clusters at the tip surface. Raman microspectroscopy analysis showed that structural characteristics at the atomic scale for boron-doped tips also differ significantly when compared to an undoped diamond tip. Furthermore, the active boron concentration, as inferred via the Raman analysis, varied greatly from tip-to-tip. It was found that tips (or tip areas) with low overall boron concentration have a higher number of electrically inactive boron, and thus non-Ohmic contacts were made when these tips contacted metallic substrates. Conversely, tips that have higher boron concentrations and a higher number of electrically active boron centers display Ohmic-like contacts. Our results demonstrate the necessity to understand and fully characterize the boron environments, boron concentrations, and atomic structure of the tips prior to performing in situ electromechanical experiments, particularly if quantitative electrical data are required.