We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aircraft tyres play a critical role in ensuring the safety of aircraft landings. This paper introduces a novel multi-scale analytical method for evaluating tyre impact performance, explicitly studying the effect of damage defects in the manufacturing and service process on tyre landing dynamic performance. Building on this approach, a numerical simulation of aircraft tyre static and impact load scenarios was conducted, followed by experimental validation. The study systematically compares and analyses the effects of void volume fraction, cord volume fraction and material scale factor on the maximum impact force experienced by aircraft tyre. The variations in maximum impact force arising from changes in tyre structural strength, and deformation can be explained by specific parameters. The findings of this research have significant implications for tyre design and engineering, as well as for enhancing the understanding of the factors that influence tyre performance and safety.
The viruses associated with bats have generated significant concern; however, there is limited knowledge regarding the endoparasites that affect these mammals. This study involved the collection of seven nematode specimens (three males and four females) from the intestines of Hipposideros armiger in Shaoguan City, Guangdong, China. Next-generation sequencing was employed to obtain the mitochondrial DNA (mtDNA) genome, which was determined to be 14,130 base pairs in length. The mitochondrial genome comprised 12 protein-coding genes, 21 tRNA genes, 2 rRNA genes, and an AT-rich non-coding region. Phylogenetic analyses based on mtDNA sequences indicated that the nematode forms a sister clade to Nematodirus, exhibiting only 74% nucleotide identity. In contrast, the nuclear ITS1 gene demonstrated a high degree of nucleotide identity (98.6%–98.8%) with Durettenema guangdongense. Consequently, the parasitic nematode identified from H. armiger is likely to belong to the genus Durettenema and has been designated as Durettenema sp. 888. Furthermore, an epidemiological investigation revealed the presence of the parasitic nematode infections in H. armiger collected from Guangdong, Guangxi, and Guizhou Provinces. Given the widespread distribution of H. armiger and their tendency to inhabit areas in close proximity to human dwellings, the influence of parasite prevalence on bat population numbers and potential for human and domestic animal transmission of this pathogen warrants further investigation.
Redox and acid-base reactions play important roles in the fate of metal contaminants in soils and sediments. The presence of significant amounts of Cr, Pb and other toxic heavy metals in contaminated soils and sediments is of great environmental concern. Oxidation states and dissolution characteristics of the heavy metals can exert negative effects on the natural environment. Atomic force microscopy (AFM) was used to follow the changes in morphology and structure of reaction products of Cr and Pb formed on mineral surfaces. Nitrate salts of Cr(III) and Pb(II) were used to replace the native exchangeable cations on muscovite and smectite surfaces and the metal-mineral systems were then reacted at different pH's and redox conditions.
For Pb, aggregate morphological forms were found at pH 6.1 and 12.4. At pH 6.1, the mean roughness value was 0.70 nm, and at pH 12.4 it was 5.30 nm. The fractal dimensions were 2.03 at pH 6.1 and 2.05 at pH 12.4. For Cr(III), both layered and aggregate morphological forms were found at pH 6.8 and 10.8. The mean roughness values were 0.90 nm at pH 6.8 and 4.3 nm at pH 10.8. Fractal dimensions for both were 2.00. The effect of redox conditions on morphological characteristics was studied on a smectite substrate. The reduced clays were more compacted than oxidized ones and the reduced clay could reduce Cr(VI) to Cr(III), forming new minerals on the surfaces.
A geochemical equilibrium model, MINTEQA2, was used to simulate the experimental conditions and predict possible reaction products. Simulation results agreed well with data from experiments, providing evidence that modeling can provide a useful “reality check” for such studies. Together, MINTEQA2 and AFM can provide important information for evaluating the morphologies and chemical reactivities of metal reaction products formed on phyllosilicate surfaces under varying environmental conditions.
The collapse of a quasi-two-dimensional column of cohesive granular media is investigated experimentally and numerically in the framework of a continuum model. The configuration is an initial parallelepiped-shaped granular pile, which is suddenly released by opening a retaining door. The experiments rely on a model material developed by Gans et al. (Phys. Rev. E, vol. 101, 2020, 032904) made of silica particles coated with polyborosiloxane, for which the adhesive interparticle force can be tuned by controlling the thickness of the coating. Numerically, the collapse is simulated using a simple cohesive rheological model implemented in a two-dimensional Navier–Stokes solver. We investigate the role of cohesion on the stability of the column, the mode of failure, the flow dynamics and the geometry of the final deposit. Our results show that the continuum model captures the main features observed experimentally.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
The capability of aircraft tyres to sustain landing impact loads is essential for flight landing safety. Hence, the development of a reliable experimental database is necessary to validate numerical models. The experimental data on aircraft tyre landing impact in the public literature are somewhat sparse. This paper describes a detailed design rig for aircraft tyre impact testing. A finite element model is then created and simulated using a finite element tool (ABAQUS). Inflation and static load simulations are analysed based on the FE tyre model to confirm its reliability. Comparison of experimental measurements with the results reveals that the model can predict the significant features of aircraft tyre impact in a landing scenario. Very little experimental data are publicly available to verify aircraft tyre models. Therefore, the experimental data in this paper fill this gap in the literature.
The sustainability concept seeks to balance how present and future generations of humans meet their needs. But because nature is viewed only as a resource, sustainability fails to recognize that humans and other living beings depend on each other for their well-being. We therefore argue that true sustainability can only be achieved if the interdependent needs of all species of current and future generations are met, and propose calling this ‘multispecies sustainability’. We explore the concept through visualizations and scenarios, then consider how it might be applied through case studies involving bees and healthy green spaces.
Fluid–structure interaction is fundamental to the characteristics of the induced flows due to the motion of structures in fluids and also is crucial to the performance of submerged structures. This paper presents a three-dimensional analytical study of the intrinsic free vibration of an elastic multilayered hollow sphere interacting with an exterior non-Newtonian fluid medium. The fluid is assumed to be characterized by a compressible linear viscoelastic model accounting for both the shear and compressional relaxation processes. For small-amplitude vibrations, the equations governing the viscoelastic fluid can be linearized, which are then solved by introducing appropriate potential functions. The solid is assumed to exhibit a particular material anisotropy, i.e. spherical isotropy, which includes material isotropy as a special case. The equations governing the anisotropic solid are solved in spherical coordinates using the state-space formalism, which finally establishes two separate transfer relations correlating the state vectors at the innermost surface with those at the outermost surface of the multilayered hollow sphere. By imposing the continuity conditions at the fluid–solid interface, two separate analytical characteristic equations are derived, which characterize two independent classes of vibration. Numerical examples are finally conducted to validate the theoretical derivation as well as to investigate the effects of various factors, including fluid viscosity and compressibility, fluid viscoelasticity, solid anisotropy and surface effect, as well as solid intrinsic damping, on the vibration characteristics of the submerged hollow sphere. Particularly, our theoretically predicted vibration frequencies and quality factors of gold nanospheres with intrinsic damping immersed in water agree exceptionally well with the available experimentally measured results. The reported analytical solution is truly and fully three-dimensional, covering from the purely radial breathing mode to the torsional mode to any general spheroidal mode as well as being applicable to various simpler situations, and hence can be a broad-spectrum benchmark in the study of fluid–structure interaction.
The mechanical properties of thin-walled plate with close-packed film cooling holes are studied based on the equivalent solid material concept. The equivalent principals of the method of equivalent strain energy, homogenization theory and uniform static deformation are considered. A simplification method of square penetration pattern for pitch and diagonal direction loading is presented. The goodness of fit is calculated to determine the optimal method. The tensile deformation, bending deflection, rotation displacement and maximum Mises equivalent stress of simplification plate models are in good agreement with plate models with close-packed film cooling holes. For square penetration pattern for pitch direction loading, the equivalent errors of Mises equivalent stress are all less than 10% when the ligament efficiency is more than 0.6.
Arthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.
Human gnathostomiasis is an emerging food-borne parasitic disease caused by nematodes of the genus Gnathostoma. Currently, serological tests are commonly applied to support clinical diagnosis. In the present study, a simple and rapid filtration-based test, dot immune–gold filtration assay (DIGFA) was developed using a partially purified antigen of Gnathostoma third-stage larvae (L3). A total of 180 serum samples were tested to evaluate the diagnostic potential of DIGFA for gnathostomiasis. The diagnostic sensitivity and specificity were 96.7% (29/30) and 100% (25/25), respectively. The cross-reactivity with sera from other helminthiasis patients ranged from 0 to 4%, with an average of 1.6% (2/125). DIGFA using a partially purified L3 antigen was not only simple and rapid, but also more accurate than standard assays for the diagnosis of human gnathostomiasis. DIGFA may represent a promising tool for application in laboratories or in the field, without requiring any instrumentation.
The wake of polygonal cylinders with side number $N=2\sim \infty$ is systematically studied based on fluid force, hot-wire, particle image velocimetry and flow visualisation measurements. Each cylinder is examined for two orientations, with a flat surface or a corner leading and facing normally to the free stream. The Reynolds number $Re$ is $1.0\times 10^{4}\sim 1.0\times 10^{5}$, based on the longitudinally projected cylinder width. The time-averaged drag coefficient $C_{D}$ and fluctuating lift coefficient on these cylinders are documented, along with the characteristic properties including the Strouhal number $St$, flow separation point and angle $\unicode[STIX]{x1D703}_{s}$, wake width and critical Reynolds number $Re_{c}$ at which the transition from laminar to turbulent flow occurs. It is found that once $N$ exceeds 12, $Re_{c}$ depends on the difference between the inner diameter (tangent to the faces) and the outer diameter (connecting corners) of a polygon, the relationship being approximately given by the dependence of $Re_{c}$ on the height of the roughness elements for a circular cylinder. It is further found that $C_{D}$ versus $\unicode[STIX]{x1D709}$ or $St$ versus $\unicode[STIX]{x1D709}$ for all the tested cases collapse onto a single curve, where the angle $\unicode[STIX]{x1D709}$ is the corrected $\unicode[STIX]{x1D703}_{s}$ associated with the laterally widest point of the polygon and the separation point. Finally, the empirical correlation between $C_{D}$ and $St$ is discussed.
A rapid dot immunogold filtration assay (DIGFA) was adopted for specific immunodiagnosis of human cerebral angiostrongyliasis, using purified 31-kDa glycoprotein specific to Angiostrongylus cantonensis as diagnostic antigen and protein A colloidal gold conjugate as antigen–antibody detector. A total of 59 serum samples were assayed – 11 samples from clinically diagnosed patients with detectable A. cantonensis-specific antibody in immunoblotting; 23 samples from patients with other related parasitic diseases, i.e. gnathostomiasis (n= 8), cysticercosis (n= 5), toxocariasis (n= 2), filariasis (n= 4), paragonimiasis (n= 2) and malaria (n= 2); and 25 samples from normal healthy subjects. The sensitivity and specificity of DIGFA to detect anti-A. cantonensis specific antibodies in serologically confirmed angiostrongyliasis cases, were both 100%. No positive DIGFA was observed in cases with other parasitic diseases, and the healthy control subjects. The 3-min DIGFA is as sensitive and specific as the 3-h immunoblot test in angiostrongyliasis confirmed cases that revealed a 31-kDa reactive band. The gold-based DIGFA is more rapid and easier to perform than the traditional enzyme-linked immunosorbent assay (ELISA). The test utilizing purified A. cantonensis antigen is reliable and reproducible for specific immunodiagnosis of human infection with A. cantonensis – thus can be applied as an additional routine test for clinical diagnostic support. Large-scale sero-epidemiological studies in endemic communities in north-east Thailand are under way to evaluate its usefulness under field conditions.
Abnormalities in cortical thickness and subcortical structures have been studied in schizophrenia but little is known about corresponding changes in mania and brain structural differences between these two psychiatric conditions, especially early in the stage of the illness. In this study we aimed to compare cortical thickness and shape of the amygdala–hippocampal complex in first-episode schizophrenia (FES) and mania (FEM).
Method
Structural magnetic resonance imaging (MRI) was performed on 28 FES patients, 28 FEM patients and 28 healthy control subjects who were matched for age, gender and handedness.
Results
Overall, the shape of the amygdala was deformed in both patient groups, relative to controls. Compared to FEM patients, FES patients had significant inward shape deformation in the left hippocampal tail, right hippocampal body and a small region in the right amygdala. Cortical thinning was more widespread in FES patients, with significant differences found in the temporal brain regions when compared with FEM and controls.
Conclusions
Significant differences were observed between the two groups of patients with FES and FEM in terms of the hippocampal shape and cortical thickness in the temporal region, highlighting that distinguishable brain structural changes are present early in the course of schizophrenia and mania.
The relationship between recurrent major depression (MD) in women and suicidality is complex. We investigated the extent to which patients who suffered with various forms of suicidal symptomatology can be distinguished from those subjects without such symptoms.
Method
We examined the clinical features of the worst episode in 1970 Han Chinese women with recurrent DSM-IV MD between the ages of 30 and 60 years from across China. Student's t tests, and logistic and multiple logistic regression models were used to determine the association between suicidality and other clinical features of MD.
Results
Suicidal symptomatology is significantly associated with a more severe form of MD, as indexed by both the number of episodes and number of MD symptoms. Patients reporting suicidal thoughts, plans or attempts experienced a significantly greater number of stressful life events. The depressive symptom most strongly associated with lifetime suicide attempt was feelings of worthlessness (odds ratio 4.25, 95% confidence interval 2.9–6.3). Excessive guilt, diminished concentration and impaired decision-making were also significantly associated with a suicide attempt.
Conclusions
This study contributes to the existing literature on risk factors for suicidal symptomatology in depressed women. Identifying specific depressive symptoms and co-morbid psychiatric disorders may help improve the clinical assessment of suicide risk in depressed patients. These findings could be helpful in identifying those who need more intense treatment strategies in order to prevent suicide.
This text aims to fill a long-standing gap in the scientific literature. While there are many texts on individual components of the cryosphere – snow cover, glaciers, ice sheets, lake and river ice, permafrost, sea ice, and icebergs – there is no comprehensive account. The text is aimed at upper division undergraduates and beginning graduate students in environmental sciences, geography, geology, glaciology, hydrology, water resources engineering, and ocean sciences, as well as providing a reference source for scientists in all environmental science and engineering disciplines.
Studies in Western countries have repeatedly shown that women with a history of childhood sexual abuse (CSA) are at increased risk for developing major depression (MD). Would this relationship be found in China?
Method
Three levels of CSA (non-genital, genital, and intercourse) were assessed by self-report in two groups of Han Chinese women: 1970 clinically ascertained with recurrent MD and 2597 matched controls. Diagnostic and other risk factor information was assessed at personal interview. Odds ratios (ORs) were calculated by logistic regression and regression coefficients by linear or Poisson regression.
Results
Any form of CSA was significantly associated with recurrent MD [OR 3.26, 95% confidence interval (CI) 1.95–5.45]. This association strengthened with increasing CSA severity: non-genital (OR 2.47, 95% CI 1.17–5.23), genital (OR 2.77, 95% CI 1.32–5.83) and intercourse (OR 13.35, 95% CI 1.83–97.42). The association between any form of CSA and MD remained significant after accounting for parental history of depression, childhood emotional neglect (CEN), childhood physical abuse (CPA) and parent–child relationship. Among the depressed women, those with CSA had an earlier age of onset, longer depressive episodes and an increased risk for generalized anxiety disorder (GAD; OR 1.92, 95% CI 1.39–2.66) and dysthymia (OR 2.16, 95% CI 1.52–3.09).
Conclusions
In Chinese women CSA is strongly associated with MD and this association increases with greater severity of CSA. Depressed women with CSA have an earlier age of onset, longer depressive episodes and increased co-morbidity with GAD and dysthymia. Although reporting biases cannot be ruled out, our results are consistent with the hypothesis that, as in Western countries, CSA substantially increases the risk for MD in China.
Analyzing the power spectrum of Total Solar Irradiance (TSI) for the period from 2003 February 25 to 2009 July 6, observed with the Total Irradiance Monitor (TIM) onboard SOlar Radiation and Climate Experiment (SORCE), we found that there are quite a number of periodic variations. The outstanding shortest one is the period of 6.7 days, about one fourth of the period of solar rotation. Checking the solar magnetic field for the same period of time observed with MDI onboard SOHO, we found that there is about 90 degree difference in longitude for the distribution of solar magnetic field. We therefore conclude that both the 90 degree difference in longitude for the distribution of solar magnetic field and the solar rotation are the reason resulting in the periodic variation of 6.7 days for the total solar radiation.
Near-infrared (NIR)-absorbing nanoparticles synthesized by the reduction of tetrachloroauric acid (HAuCl4) using sodium sulfide (Na2S) exhibited absorption bands at ∼530 nm and at the NIR region of 650−1100 nm. A detailed study on the structure and microstructure of as-synthesized nanoparticles was reported previously. The as-synthesized nanoparticles were found to consist of amorphous AuxS (x = ∼2), mostly well mixed within crystalline Au. In this work, the optical properties were tailored by varying the precursor molar ratios of HAuCl4 and Na2S. In addition, a detailed study of composition and particle-size effects on the optical properties was discussed. The change of polarizability by the introduction of S in the form of AuxS (x = ∼2) had a significant effect on NIR absorption. Also, it was found in this work that exposure of these particles to NIR irradiation using a Nd:YAG laser resulted in loss of the NIR absorption band. Thermal effects generated during NIR irradiation had led to microstructural changes that modified the optical properties of particles.