We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: After a transient ischemic attack (TIA) or minor stroke, the long-term risk of subsequent stroke is uncertain. Methods: Electronic databases were searched for observational studies reporting subsequent stroke during a minimum follow-up of 1 year in patients with TIA or minor stroke. Unpublished data on number of stroke events and exact person-time at risk contributed by all patients during discrete time intervals of follow-up were requested from the authors of included studies. This information was used to calculate the incidence of stroke in individual studies, and results across studies were pooled using random-effects meta-analysis. Results: Fifteen independent cohorts involving 129794 patients were included in the analysis. The pooled incidence rate of subsequent stroke per 100 person-years was 6.4 events in the first year and 2.0 events in the second through tenth years, with cumulative incidences of 14% at 5 years and 21% at 10 years. Based on 10 studies with information available on fatal stroke, the pooled case fatality rate of subsequent stroke was 9.5% (95% CI, 5.9 – 13.8). Conclusions: One in five patients is expected to experience a subsequent stroke within 10 years after a TIA or minor stroke, with every tenth patient expected to die from their subsequent stroke.
The nucleotide sequences of partial 18S, complete internal transcribed spacer region 1 (ITS1), complete 5.8S, complete ITS2 and partial 28S of ribosomal DNA (rDNA) and cytochrome c oxidase subunit 1 of mitochondrial DNA (MCOI) from five species of gnathostomes (G. spinigerum, G. doloresi, G. nipponicum, G. hispidum and G. binucleatum with the former four species being distributed in Japan and Asia) that cause human gnathostomiasis were compared by direct polymerase chain reaction cycle-sequencing. The nucleotide sequences of each region of the18S (613 bp), 5.8S (158 bp) and 28S (598 bp) rDNA from the five species were almost identical. The ITS1 region was different in length for the five species. The nucleotide sequences of each region of ITS2 and partial MCO1 regions were different among the five species. Therefore, these two regions can be used as genetic markers for identification of worms.
This study aimed to clarify the association between both hypoxia-inducible factor-1α and glucose transporter type-1 expression and survival outcome in advanced pharyngeal cancer without human papillomavirus infection.
Method
Twenty-five oropharyngeal and 55 hypopharyngeal cancer patients without human papillomavirus infection were enrolled. All patients had stage III–IV lesions and underwent concurrent chemoradiotherapy or surgery. Hypoxia-inducible factor-1α and glucose transporter type-1 expression were investigated in primary lesions by immunohistochemistry.
Results
There were 41 and 39 cases with low and high hypoxia-inducible factor-1α expression, and 28 and 52 cases with low and high glucose transporter type-1 expression, respectively. There was no significant correlation between hypoxia-inducible factor-1α and glucose transporter type-1 expression. In univariate analysis, nodal metastasis, clinical stage and high hypoxia-inducible factor-1α expression, but not glucose transporter type-1 expression, predicted significantly worse prognosis. In multivariate analysis, hypoxia-inducible factor-1α overexpression was significantly correlated with poor overall survival, disease-specific survival and recurrence-free survival.
Conclusion
High hypoxia-inducible factor-1α expression was an independent risk factor for poor prognosis for advanced human papillomavirus-unrelated pharyngeal cancer.
A Vaisman manifold is a special kind of locally conformally Kähler manifold, which is closely related to a Sasaki manifold. In this paper, we show a basic structure theorem of simply connected homogeneous Sasaki and Vaisman manifolds of unimodular Lie groups, up to holomorphic isometry. For the case of unimodular Lie groups, we obtain a complete classification of simply connected Sasaki and Vaisman unimodular Lie groups, up to modification.
Dog treats might be contaminated with Salmonella. In Canada and the USA, outbreaks of human salmonellosis related to exposure to animal-derived dog treats were reported. Consequently, surveillance data on Salmonella contamination of dog treats have been gathered in many countries, but not in Japan. In the current study, we investigated whether dog treats in Japan were contaminated with Salmonella. Overall, 303 dog treats (of which 255 were domestically produced) were randomly collected and the presence of Salmonella investigated. Seven samples were positive for Salmonella enterica subsp. enterica. Among these isolates, three were identified as serovar 4,5,12:i:–; two were serovar Rissen; and two were serovar Thompson. All serovar 4,5,12:i:– and Thompson isolates were resistant to one or more drugs. Two serovar Rissen isolates were fully susceptible to all tested antimicrobial agents. All Salmonella isolates were susceptible to cefotaxime, ciprofloxacin and nalidixic acid. The gene blaTEM was detected in two serovar 4,5,12:i:– isolates. The blaCTX−M and blaCMY genes were not detected in any isolates. This study demonstrated that dog treats in Japan could constitute a potential source of dog and human Salmonella infections, including multidrug-resistant Salmonella isolates.
A numerical investigation of two locally applied drag-reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case, whereas drag increase is found for the turbulence damping case. In order to account for this difference, the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a plate of finite length. Furthermore, it is shown that the far-downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. Based on this result, a simple model is developed that allows the local drag reduction rate to be related to the global one without the need to conduct expensive simulations or measurements far downstream of the control region.
We report Hα imaging observations of nearby galaxies with the Kiso Schmidt telescope. For spiral galaxy NGC 628, we found no clear correlation between Hα and CO intensities, and we discuss the star formation efficiency of this galaxy. No nuclear Hα emission in this galaxy was detected. This is consistent with spectroscopic observations which indicate that the nuclear region is in the post starburst phase. We also describe the Hα image of Hickson's compact group 92 in which diffuse emission is detected extending within the group system.
Although outbreaks of acute respiratory infection (ARI) at shelters are hypothesized to be associated with shelter crowding, no studies have examined this relationship. We conducted a retrospective study by reviewing medical records of evacuees presenting to one of the 37 clinics at the shelters in Ishinomaki city, Japan, during the 3-week period after the Great Eastern Japan Earthquake and tsunami in 2011. On the basis of a locally weighted scatter-plot smoothing technique, we categorized 37 shelters into crowded (mean space <5·5 m2/per person) and non-crowded (⩾5·5 m2) shelters. Outcomes of interest were the cumulative and daily incidence rate of ARI/10 000 evacuees at each shelter. We found that the crowded shelters had a higher median cumulative incidence rate of ARI [5·4/10 000 person-days, interquartile range (IQR) 0–24·6, P = 0·04] compared to the non-crowded shelters (3·5/10 000 person-days, IQR 0–8·7) using Mann–Whitney U test. Similarly, the crowded shelters had an increased daily incidence rate of ARI of 19·1/10 000 person-days (95% confidence interval 5·9–32·4, P < 0·01) compared to the non-crowded shelters using quasi-least squares method. In sum, shelter crowding was associated with an increased incidence rate of ARI after the natural disaster.
As a method to evaluate high-temperature equation of state (EOS) data of fissile materials precisely and safely, we numerically examined an experimental setup based on a sub-range fissile target and a high-intensity short-pulsed heavy-ion beam. As an example, we calculated one-dimensional hydrodynamic motion of a uranium target with ρ = 0.03ρsolid (ρsolid ≡ solid density = 19.05 g/cm3) induced by a pulsed 23Na+ beam with a duration of 2 ns and a peak power of 5 GW/mm2. The projectile stopping power was calculated using a density- and temperature-dependent dielectric response function. To heat the target uniformly, we optimized the experimental condition so that the energy deposition could occur almost at the top of the Bragg peak. The energy deposition inhomogeneity could be reduced to ±5% by adjusting the incident energy and the target thickness to be 2.02 MeV/u and 180 μm, respectively. The target could be heated homogeneously up to kT =7 eV well before the arrival of the rarefaction waves at the center of the target. In principle, the EOS data can be evaluated by iteratively adjusting the data embedded in the hydro code until the measured hydrodynamic motion is reproduced by the calculation. This method is consistent with the conditions of nuclear nonproliferation, because a very small amount of fissile material is enough to perform the experiment, and no shock compression occurs in the target.
We investigate the effects of superhydrophobic surfaces (SHS) carrying streamwise grooves on the flow dynamics and the resultant drag reduction in a fully developed turbulent channel flow. The SHS is modelled as a flat boundary with alternating no-slip and free-slip conditions, and a series of direct numerical simulations is performed with systematically changing the spanwise periodicity of the streamwise grooves. In all computations, a constant pressure gradient condition is employed, so that the drag reduction effect is manifested by an increase of the bulk mean velocity. To capture the flow properties that are induced by the non-homogeneous boundary conditions the instantaneous turbulent flow is decomposed into the spatial-mean, coherent and random components. It is observed that the alternating no-slip and free-slip boundary conditions lead to the generation of Prandtl’s second kind of secondary flow characterized by coherent streamwise vortices. A mathematical relationship between the bulk mean velocity and different dynamical contributions, i.e. the effective slip length and additional turbulent losses over slip surfaces, reveals that the increase of the bulk mean velocity is mainly governed by the effective slip length. For a small spanwise periodicity of the streamwise grooves, the effective slip length in a turbulent flow agrees well with the analytical solution for laminar flows. Once the spanwise width of the free-slip area becomes larger than approximately 20 wall units, however, the effective slip length is significantly reduced from the laminar value due to the mixing caused by the underlying turbulence and secondary flow. Based on these results, we develop a simple model that allows estimating the gain due to a SHS in turbulent flows at practically high Reynolds numbers.
Sustained friction drag reduction and heat transfer augmentation are simultaneously achieved in a fully developed channel flow where the averaged transport equations and wall boundary conditions for momentum and heat have identical form. Zero-net-mass-flux wall blowing and suction is assumed as a control input and its spatio-temporal distribution is determined based on optimal control theory. When the root-mean-square value of the control input is 5 % of the bulk mean velocity, the friction drag is decreased by 24 % from the uncontrolled value, whereas the heat transfer is more than doubled. Optimizations with different amplitudes of the control input and different Reynolds numbers reveal that the optimal control inputs commonly exhibit the property of a downstream travelling wave, whose wavelength is ∼250 in wall units and phase velocity is ∼30 % of the bulk mean velocity. Detailed analyses of the controlled velocity and thermal fields show that the travelling wave input contributes to dissimilar heat transfer enhancement through two distinct mechanisms, i.e. direct modification of the coherent velocity and thermal fields and an indirect effect on the random fields. The present results show that the divergence-free velocity vector and the conservative scalar are essentially different, and this is a key to achieving dissimilar heat transfer enhancement in turbulent shear flows.
Delirium and dementia are highly interrelated. However, few comprehensive epidemiological studies have examined this altered state of consciousness superimposed on dementia. We investigated the frequency of delirium in patients with dementia, its prevalence in patients with each dementia type, and its association with cerebrovascular disease (CVD) in patients with neurodegenerative dementias.
Methods:
We studied 261 consecutive outpatients in the memory clinic of a psychiatric hospital between April 2010 and September 2011. All patients underwent routine laboratory tests and computed tomography (CT), and their Mini-Mental State Examination, Neuropsychiatric Inventory (NPI), Physical Self-Maintenance Scale (PSMS), and Delirium Rating Scale – Revised 98 scores were recorded. The diagnosis of delirium was based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, text revision. CVD was detected by CT.
Results:
Among the 206 patients with dementia, delirium was present in 40 (19.4%). The proportion of patients who experienced episodes of delirium was 14.7% in the Alzheimer's disease, 34.4% in the vascular dementia, 31.8% in the dementia with Lewy bodies, and none in frontotemporal lobar degeneration. Delirium was frequently observed in patients with dementia and CVD. The NPI total and agitation subscale scores were significantly higher in dementia patients with delirium than in those without delirium. PSMS scores were significantly lower for patients with delirium than for patients without delirium.
Conclusions:
The frequency of delirium varies with each dementia type. In addition, delirium decreases activities of daily living, exaggerates behavioral and psychological symptoms dementia, and is associated with CVD in patients with neurodegenerative dementias.
The gullet worm (Gongylonema pulchrum) has been recorded from a variety of mammals worldwide, including monkeys and humans. Due to its wide host range, it has been suggested that the worm may be transmitted locally to any mammalian host by chance. To investigate this notion, the ribosomal RNA gene (rDNA), mainly regions of the internal transcribed spacers (ITS) 1 and 2, and a cytochrome c oxidase subunit I (COI) region of mitochondrial DNA of G. pulchrum were characterized using parasites from the following hosts located in Japan: cattle, sika deer, wild boars, Japanese macaques, a feral Reeves's muntjac and captive squirrel monkeys. The rDNA nucleotide sequences of G. pulchrum were generally well conserved regardless of their host origin. However, a few insertions/deletions of nucleotides along with a few base substitutions in the ITS1 and ITS2 regions were observed in G. pulchrum from sika deer, wild boars and Japanese macaques, and those differed from G. pulchrum in cattle, the feral Reeves's muntjac and captive squirrel monkeys. The COI sequences of G. pulchrum were further divided into multiple haplotypes and two groups of haplotypes, i.e. those from a majority of sika deer, wild boars and Japanese macaques and those from cattle and zoo animals, were clearly differentiated. Our findings indicate that domestic and sylvatic transmission cycles of the gullet worm are currently present, at least in Japan.
A wide range of applicability of the Reynolds analogy between turbulent momentum and heat transport implies inherent difficulty in diminishing or enhancing skin friction and heat transfer independently. In the present study, we introduce suboptimal control theory for achieving a dissimilar control of enhancing heat transfer, while keeping the skin friction not increased considerably in a fully developed channel flow. The Fréchet differentials clearly show that the responses of velocity and temperature fields to wall blowing/suction are quite different, due to the fact that the velocity is a divergence-free vector field while the temperature is a conservative scalar field. This essential difference allows us to achieve dissimilar control even in flows where the averaged momentum and energy transport equations have an identical form. It is also found that the resultant optimized mode of control input exhibits a streamwise travelling-wave-like property. By exploring the phase relationship between the travelling-wave-like control input and the velocity and thermal fields, we reveal that such control input contributes to dissimilar heat transfer enhancement via two different mechanisms, i.e. direct modification of the coherent components of the Reynolds shear stress and the turbulent heat flux, and indirect effects on the incoherent components, through modification of the mean velocity and temperature profiles. Based on these results, a simple open-loop strategy for dissimilar control is proposed and assessed.
Recent epidemiological data suggest a link between the consumption of bovine offal products and Shiga toxin-producing Escherichia coli (STEC) infection in Japan. This study thus examined the prevalence of STEC in various types of these foods. PCR screened 229 bovine offal products for the presence of Shiga toxin (stx) gene. Thirty-eight (16·6%) samples were stx positive, of which eight were positive for rfbEO157 and three were positive for wzyO26. Four O157 and one O26 STEC isolates were finally obtained from small-intestine and omasum products. Notably, homogenates of bovine intestinal products significantly reduced the extent of growth of O157 in the enrichment process compared to homogenates of beef carcass. As co-incubation of O157 with background microbiota complex from bovine intestinal products in buffered peptone water, in the absence of meat samples, tended to reduce the extent of growth of O157, we reasoned that certain microbiota present in offal products played a role. In support of this, inoculation of generic E. coli from bovine intestinal products into the homogenates significantly reduced the extent of growth of O157 in the homogenates of bovine intestinal and loin-beef products, and this effect was markedly increased when these homogenates were heat-treated prior to inoculation. Together, this report provides first evidence of the prevalence of STEC in a variety of bovine offal products in Japan. The prevalence data herein may be useful for risk assessment of those products as a potential source of human STEC infection beyond the epidemiological background. The growth characteristic of STEC O157 in offal products also indicates the importance of being aware when to test these food products.
To examine the usefulness of a three-dimensional model for surgical navigation of cholesteatoma.
Materials and method:
A three-dimensional model was prototyped using selective laser sintering. Based on detailed computed tomography data, powder layers were laser-fused and accumulated to create a three-dimensional structure. The computed tomography threshold was adjusted to simultaneously replicate bony structures and soft tissues.
Results:
The cholesteatoma, major vessels and bony structures were well replicated. This laser-sintered model was used to aid surgery for recurrent cholesteatoma. The cholesteatoma, which extended from the hypotympanum through the styloid process sheath and the internal carotid artery sheath, was removed safely via a minimal skin incision.
Conclusion:
The laser-sintered model was useful for surgical planning and navigation in a cholesteatoma case involving complex bony structures and soft tissue.
The most common eruptions observed by humans, and by far the most dangerous to human populations, are those from volcanoes above the world's subduction zones (Simkin and Siebert, 2000). Population growth and development of technology are also concentrated in areas such as the Pacific Rim, where subduction-zone volcanism is prevalent. Many new and proposed nuclear facilities are therefore located in regions of active subduction (Connor et al., Chapter 3, this volume). Because nuclear facilities require low-risk sites, and because some nuclear facilities, such as high-level radioactive waste repositories, require very long performance periods, it is necessary to understand the nature of volcanism in subduction zones from a regional, plate tectonic perspective. This perspective will allow us to develop more robust hazard models for future volcanic activity on a variety of timescales, and to better assess assumptions made by these volcanic hazard models. The goal of this chapter is to provide state-of-the-art information about the geological processes operating on a regional scale in subduction zones. Subduction zones are locations where oceanic plates subduct into the mantle; they are characterized geomorphologically by deep ocean trenches and volcanic arcs or continental margins, seismically by landward-dipping deep seismic zones and magmatically by arcuate belts of volcanoes. Subduction and arc magmatism are fundamental processes in the evolution of the Earth, because they play crucial roles in the present-day differentiation of Earth's materials and are believed to be major sites of continental crust generation that have operated throughout geologic time (e.g. Taylor, 1967; Arculus, 1981; Gill, 1981; Eiler, 2003; Rudnick and Gao, 2003).
We present the high-resolution 12CO(J = 1 − 0), 13CO(J = 1 − 0) and 12CO(J = 3 − 2) maps toward a GMA located on the southern arm region of M31 using Nobeyama 45 m and ASTE 10 m telescopes. The GMA consists of two velocity-components, i.e., red and blue. The blue component shows a strong and narrow peak, whereas the red one shows a weak and broad profile. The red component has a lower 12CO(J = 1 − 0)/13CO(J = 1 − 0) ratio (~ 5) than that of the blue one (~ 16), indicating that the red component is denser than the blue one. The red component could be the decelerated gas if we consider the galactic rotational velocity in this region. We suggest that the red component is “post shock” dense gas decelerated due to a spiral density wave. This could be observational evidence of dense molecular gas formation due to galactic shock by spiral density waves.
We also present results from on-going observations toward NGC 604, which is the supergiant HII region of M33, using Nobeyama 45 m and ASTE 10 m telescopes. The ratio of 12CO(J = 3 − 2) to 12CO(J = 1 − 0) ranges from 0.3 to 1.2 in NGC 604. The 12CO(J = 1 − 0) map shows the clumpy structure while 12CO(J = 3 − 2) shows a strong peak near to the central star cluster of NGC 604. The high ratio gas is distributed on the arc-like or shell-like structure along with Hα emission and HII region detected by radio continuum. These suggest that the dense gas formation and second generation star formation occur in the surrounding gas compressed by the stellar wind and/or supernova in central star cluster.
An ion source for generation of low-charged heavy ions has been developed using low-power KrF excimer and frequency-doubled Nd:YAG lasers. The ion source was examined with two experimental modes of low-voltage DC extraction at ∼20 kV and high-voltage pulse extraction at 150 kV. Normalized emittance of extracted beams composed of Cu+ and Cu2+ ions was measured to be about 0.05 and 0.8 πmm-mrad for the DC extraction and the pulse extraction, respectively. Electron temperature was observed by means of a single probe method to be 0.8 to 2.5 eV, depending on the intensity of the KrF laser.
High-throughput synthesis and characterization techniques have been effective in discovering new materials and performing rapid mapping of phase diagrams. The application of the combinatorial strategy to explore doped transition-metal oxides has led to the discovery of a transparent room-temperature ferromagnetic oxide in Co-doped anatase TiO2. The discovery has triggered a wave of studies into other metal oxide systems in pursuit of diluted magnetic semiconductors. In this article, we describe recent combinatorial studies of magnetic transition-metal oxides, germanium-based magnetic semiconductors, and Heusler alloys.