We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
A kaolin clay occurring in Carboniferous mudstone near the Jiangshan-Shaoxing deep fault in Zhejiang Province, eastern China was characterized by XRD and IR. Although the dominant mineral appeared to be kaolinite, IR also suggested the possible occurrence of nacrite. This was confirmed by forming intercalation complexes with potassium acetate and with hydrazine hydrate, both water complexes having the same characteristic spacing at 8.35 Â. Different particle size fractions of the kaolin clay were studied and the results indicated that nacrite content increased with increasing particle size. This occurrence of nacrite is consistent with previous findings of the polytype in high temperature and pressure environments.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
A disruption database characterizing the current quench of disruptions with ITER-like tungsten divertor has been developed on EAST. It provides a large number of plasma parameters describing the predisruptive plasma, current quench time, eddy current, and mitigation by massive impurity injection, which shows that the current quench time strongly depends on magnetic energy and post-disruption electron temperature. Further, the energy balance and magnetic energy dissipation during the current quench phase has been well analysed. Magnetic energy is also demonstrated to be dissipated mainly by ohmic reheating and inductive coupling, and both of the two channels have great effects on current quench time. Also, massive gas injection is an efficient method to speed up the current quench and increase the fraction of impurity radiation.
Klebsiella pneumoniae is a common pathogen associated with nosocomial infections and is characterised serologically by capsular polysaccharide (K) and lipopolysaccharide O antigens. We surveyed a total of 348 non-duplicate K. pneumoniae clinical isolates collected over a 1-year period in a tertiary care hospital, and determined their O and K serotypes by sequencing of the wbb Y and wzi gene loci, respectively. Isolates were also screened for antimicrobial resistance and hypervirulent phenotypes; 94 (27.0%) were identified as carbapenem-resistant (CRKP) and 110 (31.6%) as hypervirulent (hvKP). isolates fell into 58 K, and six O types, with 92.0% and 94.2% typeability, respectively. The predominant K types were K14K64 (16.38%), K1 (14.66%), K2 (8.05%) and K57 (5.46%), while O1 (46%), O2a (27.9%) and O3 (11.8%) were the most common. CRKP and hvKP strains had different serotype distributions with O2a:K14K64 (41.0%) being the most frequent among CRKP, and O1:K1 (26.4%) and O1:K2 (17.3%) among hvKP strains. Serotyping by gene sequencing proved to be a useful tool to inform the clinical epidemiology of K. pneumoniae infections and provides valuable data relevant to vaccine design.
We describe the case of an 11-month-old girl with a rare cerebellar glioblastoma driven by a NACC2-NTRK2 (Nucleus Accumbens Associated Protein 2-Neurotrophic Receptor Tyrosine Kinase 2) fusion. Initial workup of our case demonstrated homozygous CDKN2A deletion, but immunohistochemistry for other driver mutations, including IDH1 R132H, BRAF V600E, and H3F3A K27M were negative, and ATRX was retained. Tissue was subsequently submitted for personalized oncogenomic analysis, including whole genome and whole transcriptome sequencing, which demonstrated an activating NTRK2 fusion, as well as high PD-L1 expression, which was subsequently confirmed by immunohistochemistry. Furthermore, H3 and IDH demonstrated wildtype status. These findings suggested the possibility of treatment with either NTRK- or immune checkpoint- inhibitors through active clinical trials. Ultimately, the family pursued standard treatment that involved Head Start III chemotherapy and proton radiotherapy. Notably, at most recent follow upapproximately two years from initial diagnosis, the patient is in disease remission and thriving, suggesting favorable biology despite histologic malignancy. This case illustrates the value of personalized oncogenomics, as the molecular profiling revealed two actionable changes that would not have been apparent through routine diagnostics. NTRK fusions are known oncogenic drivers in a range of cancer types, but this is the first report of a NACC2-NTRK2 fusion in a glioblastoma.
LEARNING OBJECTIVES
This presentation will enable the learner to:
1. Explore the current molecular landscape of pediatric high grade gliomas
2. Recognize the value of personalized oncogenomic analysis, particularly in rare and/or aggressive tumors
3. Discuss the current status of NTRK inhibitor clinical trials
High-energy electron radiography (HEER) has been proposed for time-resolved imaging of materials, high-energy density matter, and for inertial confinement fusion. The areal-density resolution, determined by the image intensity information is critical for these types of diagnostics. Preliminary experimental studies for different materials with the same thickness and the same areal-density target have been imaged and analyzed. Although there are some discrepancies between experimental and theory analysis, the results show that the density distribution can indeed be attained from HEER. The reason for the discrepancies has been investigated and indicates the importance of the uniformity in the transverse distribution beam illuminating the target. Furthermore, the method for generating a uniform transverse distribution beam using octupole magnets was studied and verified by simulations. The simulations also confirm that the octupole field does not affect the angle-position correlation in the center part beam, a critical requirement for the imaging lens. A more practical method for HEER using collimators and octupoles for generating more uniform beams is also described. Detailed experimental results and simulation studies are presented in this paper.
A series of kaolin-rich mineral samples was treated with hydrofluoric acid (HF) and the residual material characterized using infrared (IR) spectroscopy, supplemented by scanning electron microscope (SEM) observations. By examining the hydroxyl-stretching region of the IR spectra before and after treatment with hydrofluoric acid, it was possible to identify the three kaolin polytypes – kaolinite, dickite and nacrite – with greater certainty. The SEM observations suggested that the rate of dissolution of the kaolin phase was largely dependent on particle size. In general, dickite and nacrite tend to occur in the coarser clay fractions, and for this reason the finer-grained kaolinite is preferentially dissolved by the HF treatment. However, in the Keokuk kaolinite, which occurs in exceptionally large particles, it was still possible to concentrate a dickitic fraction by HF treatment, suggesting that in some cases kaolinite may be more susceptible to HF dissolution for reasons other than particle size. The IR spectra of disordered kaolinite could be interpreted as arising from a mixture of kaolinite and dickite components. However, both components dissolve at the same rate in HF, supporting the idea that disordered kaolinite consists of an intimate association of randomly stacked dickite-like and kaolinite-like components.
Cereal grains treated with organic acids were proved to increase ruminal resistant starch and can relieve the risk of ruminal acidosis. However, previous study mainly focussed on acid-treated barley, the effects of organic acid-treated corn is still unknown. The objectives of this study were to evaluate whether feeding ground corn steeped in citric acid (CA) would affect ruminal pH and fermentation patterns, milk production and innate immunity responses in dairy goats. Eight ruminally cannulated Saanen dairy goats were used in a crossover designed experiment. Each experimental period was 21 day long including 14 days for adaption to new diet and 7 days for sampling and data collection. The goats were fed high-grain diet contained 30% hay and 70% corn-based concentrate. The corn was steeped either in water (control) or in 0.5% (wt/vol) CA solution for 48 h. Goats fed CA diet showed improved ruminal pH status with greater mean and minimum ruminal pH, and shorter (P<0.05) duration of ruminal pH<5.6 and less area of ruminal pH<5.6, 5.8 and 6.0. Concentration of total volatile fatty acid and molar proportion of propionate were less but the molar proportion of acetate was greater (P<0.05) in goats fed the CA diet than the control diet. Concentration of ruminal lipopolysaccharide (LPS) was lower (P<0.05) and that of lactic acid also tended (P<0.10) to be lower in goats fed CA than the control. Although dry matter intake, actual milk yield, yield and content of milk protein and lactose were not affected, the milk fat content and 4% fat-corrected milk tended (P<0.10) to be greater in goats fed CA diet. For the inflammatory responses, peripheral LPS did not differ, whereas the concentration of LPS binding protein and serum amyloid A tended (P<0.10) to be less in goats fed CA diet. Similarly, goats fed CA diet had less (P<0.05) concentration of haptoglobin and tumour necrosis factor. These results indicated that feeding ground corn treated with CA effectively improved ruminal pH status, thus alleviated the risk of ruminal acidosis, reduced inflammatory response, and tend to improve milk yield and milk fat test.
Here a compact three orthogonal planes high-energy electron radiography system was proposed. One of the critical technologies, the ultra-fast beam bunches split from the bunch train are studied. The separated bunches could be transported to the three orthogonal planes of the target for dynamic radiography diagnostics. The key elements of the ultra-fast bunches split system are transverse deflecting cavity (TDC) and the twin septum magnet (TSM). The principle of TDC and TSM are briefly introduced. An example of the beam bunches split system for test experiment (40 MeV electron beam) with TDC and TSM is designed and studied by particle-tracking simulation and it confirms this method is valid and feasible. Especially with TSM, a compact three orthogonal planes radiography system can be realized. The evolution of the beam parameters along the beam line from simulation are investigated. The detailed design of the beam split system and beam dynamics simulation study are presented in this paper.
An experimental investigation into laser ablation of secondary explosives, cyclotetramethylene tetranitramine (HMX), has been carried out by using a solid-state laser at the wavelength of 1064 nm. The ion particles of decomposition were detected by using a time-of-flight mass spectrometer. Possible attributions of both negative ions and positive ions were obtained. Some obvious peaks were found at m/z = 18, 28, 46, 60, and 106, corresponding to H2O, CO/N2/H2CN, NO2, CH2NO2/N2O2, and N(NO2)2/CH2(NO2)2, respectively. According to the distribution of the particles, three possible pathways were proposed to explain the process of particles. The results may shed some light on the possible decomposition mechanism of HMX under laser initiation.