We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Finsler geometry generalises Riemannian geometry in the same sense that Banach spaces generalise Hilbert spaces. This book presents an expository account of seven important topics in Riemann–Finsler geometry, ones which have undergone significant development but have not had a detailed pedagogical treatment elsewhere. Each article will open the door to an active area of research, and is suitable for a special topics course in graduate-level differential geometry. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry and parametrised jet bundles, and include a variety of instructive examples.
The characterization of projectively flat Finsler metrics on an open subset in $R^n$ is the Hilbert’s fourth problem in the regular case. Locally projectively flat Finsler manifolds form an important class of Finsler manifolds. Every Finsler metric induces a spray on the manifold via geodesics. Therefore, it is a natural problem to investigate the geometric and topological properties of manifolds equipped with a spray. In this paper, we study the Pontrjagin classes of a manifold equipped with a locally projectively flat spray and show that such manifold must have zero Pontrjagin classes.
Infinitely many new Einstein Finsler metrics are constructed on several homogeneous spaces. By imposing certain conditions on the homogeneous spaces, it is shown that the Ricci constant condition becomes an ordinary differential equation. The regular solutions of this equation lead to a two parameter family of Einstein Finsler metrics with vanishing $S$ curvature.
There are several notions of Ricci curvature tensor in Finsler geometry and spray geometry. One of them is defined by the Hessian of the well-known Ricci curvature. In this paper we will introduce a new notion of Ricci curvature tensor and discuss its relationship with the Ricci curvature and some non-Riemannian quantities. Using this Ricci curvature tensor, we shall have a better understanding of these non-Riemannian quantities.
Randers metrics are a special class of Finsler metrics. Every Randers metric can be expressed in terms of a Riemannian metric and a vector field via Zermelo navigation. In this paper, we show that a Randers metric has constant scalar curvature if the Riemannian metric has constant scalar curvature and the vector field is homothetic
In this paper we study several non-Riemannian quantities in Finsler geometry. These non-Riemannian quantities play an important role in understanding the geometric properties of Finsler metrics. In particular, we study a new non-Riemannian quantity defined by the $\text{S}$-curvature. We show some relationships among the flag curvature, the $\text{S}$-curvature, and the new non-Riemannian quantity.
In this note, we study a new Finslerian quantity Ĉ defined by the Riemannian curvature. We prove that the new Finslerian quantity is a non-Riemannian quantity for a Finsler manifold with dimension n = 3. Then we study Finsler metrics of scalar curvature. We find that the Ĉ-curvature is closely related to the flag curvature and the H-curvature. We show that Ĉ-curvature gives, a measure of the failure of a Finsler metric to be of weakly isotropic flag curvature. We also give a simple proof of the Najafi-Shen-Tayebi' theorem.
In this paper, we study locally projectively flat fourth root Finsler metrics and their generalized metrics. We prove that if they are irreducible, then they must be locally Minkowskian.
In this paper, we study a long existing open problem on Landsberg metrics in Finsler geometry. We consider Finsler metrics defined by a Riemannian metric and a 1-form on a manifold. We show that a regular Finsler metric in this form is Landsbergian if and only if it is Berwaldian. We further show that there is a two-parameter family of functions, $\phi \,=\,\phi \left( s \right)$, for which there are a Riemannian metric $\alpha $ and a 1-form $\beta $ on a manifold $M$ such that the scalar function $F\,=\,\alpha \phi \left( \beta /\alpha\right)$ on $TM$ is an almost regular Landsberg metric, but not a Berwald metric.
We study an important class of Finsler metrics, namely, Randers metrics. We classify Randers metrics of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag curvature.
The solutions to Hilbert's Fourth Problem in the regular case are projectively flat Finsler metrics. In this paper, we consider the so-called $\left( \alpha ,\,\beta\right)$-metrics defined by a Riemannian metric $\alpha$ and a 1-form $\beta$, and find a necessary and sufficient condition for such metrics to be projectively flat in dimension $n\,\ge \,3$.
In this paper, we prove a global rigidity theorem for negatively curved Finsler metrics on a compact manifold of dimension $n\,\ge \,3$. We show that for such a Finsler manifold, if the flag curvature is a scalar function on the tangent bundle, then the Finsler metric is of Randers type. We also study the case when the Finsler metric is locally projectively flat.
Roughly speaking, Finsler metrics on a manifold are regular, but not necessarily reversible, distance functions. In 1854, B. Riemann attempted to study a special class of Finsler metrics—Riemannian metrics—and introduced what is now called the Riemann curvature. This infinitesimal quantity faithfully reveals the local geometry of a Riemannian manifold and becomes the central concept of Riemannian geometry. It is a natural problem to understand general regular distance functions by introducing suitable infinitesimal quantities. For more than half a century, there had been no essential progress until P. Finsler studied the variational problem in a Finsler manifold. However, it was L. Berwald who first successfully extended the notion of Riemann curvature to Finsler metrics by introducing what is now called the Berwald connection. He also introduced some non-Riemannian quantities via his connection [Berwald 1926; 1928]. Since then, Finsler geometry has been developed gradually.
The Riemann curvature is defined using the induced spray, which is independent of any well-known connection in Finsler geometry. It measures the shape of the space. The Cartan torsion and the distortion are two primary geometric quantities describing the geometric properties of the Minkowski norm in each tangent space. Differentiating them along geodesics gives rise to the Landsberg curvature and the S-curvature. These quantities describe the rates of change of the “color pattern” on the space.
In this article, I am going to discuss the geometric meaning of the Landsberg curvature, the S-curvature, the Riemann curvature, and their relationship. I will give detailed proofs for several important local and global results.
This volume contains seven expository articles and concerns three facets of Riemann–Finsler geometry that have undergone important recent developments:
1. The concept of volumes on normed spaces and Finsler manifolds, and crystalline motion by mean curvature in phase transitions.
2. The essential role played by Finsler metrics in complex manifold theory, together with the resolution of the Kobayashi conjecture and a special case of the Green–Griffiths conjecture.
3. The significance of the flag, Ricci, and S-curvatures of Finsler metrics, as well as the Sphere Theorem for nonreversible Finsler structures.
Conspicuously absent from the above are two highly geometrical areas: Bryant's use of exterior differential systems to understand Finsler metrics of constant flag curvature, and Foulon's dynamical systems approach to Finsler geometry. They are not included here because reasonable expositions already exist in a special Chern issue of the Houston Journal of Mathematics28 (2002), 221–262 (Bryant) and 263–292 (Foulon). Our goal is to render the aforementioned developments accessible to the differential geometry community at large. It is not our intention to present an encyclopedic picture of the field. What we do covet are concrete examples, instructive graphics, meaningful computations, and care in organizing technical arguments. The resulting articles appear to have met these criteria at an aboveaverage level.
All the articles have been refereed. In fact, a total of 26 referee reports were obtained, some addressing the mathematics, others critiquing expository matters. After a few rounds of revision, each article was line-edited by at least one mathematician who is not familiar with the topic in question, in the hope that this would uncover most typographical mistakes.
The flag curvature of a Finsler metric is called a Riemannian quantity because it is an extension of sectional curvature in Riemannian geometry. In Finsler geometry, there are several non-Riemannian quantities such as the (mean) Cartan torsion, the (mean) Landsberg curvature and the S-curvature, which all vanish for Riemannian metrics. It is important to understand the geometric meanings of these quantities. In the paper, Finsler metrics of scalar curvature (that is, the flag curvature is a scalar function on the slit tangent bundle) are studied and the flag curvature is partially determined when certain non-Riemannian quantities are isotropic. Using the obtained formula for the flag curvature, locally projectively flat Randers metrics with isotropic S-curvature are classified.
In the paper, we study the shortest time problem on a Riemannian space with an external force. We show that such problem can be converted to a shortest path problem on a Randers space. By choosing an appropriate external force on the Euclidean space, we obtain a non-trivial Randers metric of zero flag curvature. We also show that any positively complete Randers metric with zero flag curvature must be locally Minkowskian.