To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.
We prove that $164\, 634\, 913$ is the smallest positive integer that is a sum of two rational sixth powers, but not a sum of two integer sixth powers. If $C_{k}$ is the curve $x^{6} + y^{6} = k$, we use the existence of morphisms from $C_{k}$ to elliptic curves, together with the Mordell–Weil sieve, to rule out the existence of rational points on $C_{k}$ for various k.
We generate ray-class fields over imaginary quadratic fields in terms of Siegel–Ramachandra invariants, which are an extension of a result of Schertz. By making use of quotients of Siegel–Ramachandra invariants we also construct ray-class invariants over imaginary quadratic fields whose minimal polynomials have relatively small coefficients, from which we are able to solve certain quadratic Diophantine equations.
We consider a smooth system of two homogeneous quadratic equations over $\mathbb{Q}$ in $n\geqslant 13$ variables. In this case, the Hasse principle is known to hold, thanks to the work of Mordell in 1959. The only local obstruction is over $\mathbb{R}$. In this paper, we give an explicit algorithm to decide whether a nonzero rational solution exists and, if so, compute one.
We discuss the Mordell–Weil sieve as a general technique for proving results concerning rational points on a given curve. In the special case of curves of genus 2, we describe quite explicitly how the relevant local information can be obtained if one does not want to restrict to mod p information at primes of good reduction. We describe our implementation of the Mordell–Weil sieve algorithm and discuss its efficiency.
In this paper, we derive a number of explicit lower bounds for rational approximation to certain cubic irrationalities, proving, for example, that for any non-zero integers p and q. A number of these irrationality measures improve known results, including those for . Some Diophantine consequences are briefly discussed.
We consider the Egyptian fraction equation and discuss techniques for generating solutions. By examining a quadratic recurrence relation modulo a family of primes we have found some 500 new infinite sequences of solutions. We also initiate an investigation of the randomness of the distribution of solutions, and show that there are infinitely many solutions not generated by the aforementioned technique.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.