We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We classify quasidiagonals of the $SL(2, R)$ action on products of strata or hyperelliptic loci. We use the technique of diamonds developed by Apisa and Wright in order to use induction on this problem.
We show the properness of the moduli stack of stable surfaces over $\mathbb{Z}\left[ {1/30} \right]$, assuming the locally-stable reduction conjecture for stable surfaces. This relies on a local Kawamata–Viehweg vanishing theorem for 3-dimensional log canonical singularities at closed point of characteristic $p \ne 2,3$ and $5$, which are not log canonical centres.
We provide a complete description of realizable period representations for meromorphic differentials on Riemann surfaces with prescribed orders of zeros and poles, hyperelliptic structure and spin parity.
This paper contains two results on Hodge loci in $\mathsf{M}_{g}$. The first concerns fibrations over curves with a non-trivial flat part in the Fujita decomposition. If local Torelli theorem holds for the fibers and the fibration is non-trivial, an appropriate exterior power of the cohomology of the fiber admits a Hodge substructure. In the case of curves it follows that the moduli image of the fiber is contained in a proper Hodge locus. The second result deals with divisors in $\mathsf{M}_{g}$. It is proved that the image under the period map of a divisor in $\mathsf{M}_{g}$ is not contained in a proper totally geodesic subvariety of $\mathsf{A}_{g}$. It follows that a Hodge locus in $\mathsf{M}_{g}$ has codimension at least 2.
Affine varieties among all algebraic varieties have simple structures. For example, an affine variety does not contain any complete algebraic curve. In this paper, we study affine-related properties of strata of $k$-differentials on smooth curves which parameterize sections of the $k$th power of the canonical line bundle with prescribed orders of zeros and poles. We show that if there is a prescribed pole of order at least $k$, then the corresponding stratum does not contain any complete curve. Moreover, we explore the amusing question whether affine invariant manifolds arising from Teichmüller dynamics are affine varieties, and confirm the answer for Teichmüller curves, Hurwitz spaces of torus coverings, hyperelliptic strata as well as some low genus strata.
We present a new connection between the Hele-Shaw flow, also known as two-dimensional Laplacian growth, and the theory of holomorphic discs with boundary contained in a totally real submanifold. Using this, we prove short-time existence and uniqueness of the Hele-Shaw flow with varying permeability both when starting from a single point and also when starting from a smooth Jordan domain. Applying the same ideas, we prove that the moduli space of smooth quadrature domains is a smooth manifold whose dimension we also calculate, and we give a local existence theorem for the inverse potential problem in the plane.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.