To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate when the algebraic numerical range is a C-spectral set in a Banach algebra. While providing several counterexamples based on classical ideas as well as combinatorial Banach spaces, we discuss positive results for matrix algebras and provide an absolute constant in the case of complex $2\times 2$-matrices with the induced $1$-norm. Furthermore, we discuss positive results for infinite-dimensional Banach algebras, including the Calkin algebra.
The numerical range in the quaternionic setting is, in general, a non-convex subset of the quaternions. The essential numerical range is a refinement of the numerical range that only keeps the elements that have, in a certain sense, infinite multiplicity. We prove that the essential numerical range of a bounded linear operator on a quaternionic Hilbert space is convex. A quaternionic analogue of Lancaster theorem, relating the closure of the numerical range and its essential numerical range, is also provided.
We continue our investigation of the real space H of Hermitian matrices in $${M_n}(\mathbb{C})$$ with respect to norms on $${\mathbb{C}^n}$$. We complete the commutative case by showing that any proper real subspace of the real diagonal matrices on $${\mathbb{C}^n}$$ can appear as H. For the non-commutative case, we give a complete solution when n=3 and we provide various illustrative examples for n ≥ 4. We end with a short list of problems.
We obtain several norm and eigenvalue inequalities for positive matrices partitioned into four blocks. The results involve the numerical range $W(X)$ of the off-diagonal block $X$, especially the distance $d$ from $0$ to $W(X)$. A special consequence is an estimate,
We investigate the real space H of Hermitian matrices in $M_n(\mathbb{C})$ with respect to norms on $\mathbb{C}^n$. For absolute norms, the general form of Hermitian matrices was essentially established by Schneider and Turner [Schneider and Turner, Linear and Multilinear Algebra (1973), 9–31]. Here, we offer a much shorter proof. For non-absolute norms, we begin an investigation of H by means of a series of examples, with particular reference to dimension and commutativity.
It is shown that Jamison sequences, introduced in 2007 by Badea and Grivaux, arise naturally in the study of topological groups with no small subgroups, of Banach or normed algebra elements whose powers are close to identity along subsequences, and in characterizations of (self-adjoint) positive operators by the accretiveness of some of their powers. The common core of these results is a description of those sequences for which non-identity elements in Lie groups or normed algebras escape an arbitrary small neighborhood of the identity in a number of steps belonging to the given sequence. Several spectral characterizations of Jamison sequences are given, and other related results are proved.
We introduce a second numerical index for real Banach spaces with non-trivial Lie algebra, as the best constant of equivalence between the numerical radius and the quotient of the operator norm modulo the Lie algebra. We present a number of examples and results concerning absolute sums, duality, vector-valued function spaces…which show that, in many cases, the behaviour of this second numerical index differs from the one of the classical numerical index. As main results, we prove that Hilbert spaces have second numerical index one and that they are the only spaces with this property among the class of Banach spaces with one-unconditional basis and non-trivial Lie algebra. Besides, an application to the Bishop-Phelps-Bollobás property for the numerical radius is given.
In this paper we generalize the notion of the C-numerical range of a matrix to operators in arbitrary tracial von Neumann algebras. For each self-adjoint operator C, the C-numerical range of such an operator is defined; it is a compact, convex subset of ℂ. We explicitly describe the C-numerical ranges of several operators and classes of operators.
In this paper we will characterize the spectrum of a hyponormal operator and the joint spectrum of a doubly commuting n-tuple of strongly hyponormal operators on a uniformly smooth space. We also describe some applications of these results.
For an operator on a Hilbert space, points in the closure of its numerical range are characterized as either extreme, non-extreme boundary, or interior in terms of various associated sets of bounded sequences of vectors. These generalize similar results due to Embry, for points in the numerical range.
Stampfli and Embry characterized points in the numerical range which are extreme in terms of the linearity of corresponding sets of vectors. Das and Craven generalized this to include the case of unattained boundary points. We give an alternative proof of this result using a technique of Berberian. This approach appears to be more conceptual in that it enables us to deduce the result from that of Stampfli and Embry. We also illustrate how the same technique may be used to generalize other results of Embry.
This paper is concerned with the numerical range and some related properties of the operator Δ/ S: T → AT – TB(T∈S), where A, B are (bounded linear) operators on the normed linear spaces X and Y. respectively, and S is a linear subspace of the space ℒ (Y, X) of all operators from Y to X. S is assumed to contain all finite operators, to be invariant under Δ, and to be suitably normed (not necessarily with the operator norm). Then the algebra numerical range of Δ/ S is equal to the difference of the algebra numerical ranges of A and B. When X = Y and S = ℒ (X), Δ is Hermitian (resp. normal) in ℒ (ℒ(X)) if and only if A–λ and B–λ are Hermitian (resp. normal) in ℒ(X)for some scalar λ;if X: = H is a Hilbert space and if S is a C *-algebra or a minimal norm ideal in ℒ(H)then any Hermitian (resp. normal) operator in S is of the form Δ/ S for some Hermitian (resp. normal) operators A and B. AT = TB implies A*T = TB* are hyponormal operators on the Hilbert spaces H1 and H2, respectively, and T is a Hilbert-Schmidt operator from H2 to H1.
We show that a bounded linear operator on a uniformly convex space may be perturbed by a compact operator of arbitrarily small norm to yield an operator which attains its numerical radius.
Stampfli and Embry have shown that a point of the numerical range of an operator is extreme if and only if a set of vectors corresponding to it is linear. This is generalized here to show that a point of the closure of the numerical range is extreme if and only if a corresponding set of sequences forms a linear space. A more geometric alternative proof is given for a theorem of Das and Garske concerning weak convergence to zero at the unattained extreme points of the closure of the numerical range.The result is shown to hold also for lone extreme points of the numerical range which lie on line segments on its boundary. Further, a bound is obtained on the norm of the weak limit of the weakly convergent sequences corresponding to points on a line segment on the boundary of numerical range.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.