Let p be a prime and let
$J_r$ denote a full
$r \times r$ Jordan block matrix with eigenvalue
$1$ over a field F of characteristic p. For positive integers r and s with
$r \leq s$, the Jordan canonical form of the
$r s \times r s$ matrix
$J_{r} \otimes J_{s}$ has the form
$J_{\lambda _1} \oplus J_{\lambda _2} \oplus \cdots \oplus J_{\lambda _{r}}$. This decomposition determines a partition
$\lambda (r,s,p)=(\lambda _1,\lambda _2,\ldots , \lambda _{r})$ of
$r s$. Let
$n_1, \ldots , n_k$ be the multiplicities of the distinct parts of the partition and set
$c(r,s,p)=(n_1,\ldots ,n_k)$. Then
$c(r,s,p)$ is a composition of r. We present a new bottom-up algorithm for computing
$c(r,s,p)$ and
$\lambda (r,s,p)$ directly from the base-p expansions for r and s.