Let
$\mathcal {X}$ be a Banach space over the complex field
$\mathbb {C}$ and
$\mathcal {B(X)}$ be the algebra of all bounded linear operators on
$\mathcal {X}$. Let
$\mathcal {N}$ be a nontrivial nest on
$\mathcal {X}$,
$\text {Alg}\mathcal {N}$ be the nest algebra associated with
$\mathcal {N}$, and
$L\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ be a linear mapping. Suppose that
$p_n(x_1,x_2,\ldots ,x_n)$ is an
$(n-1)\,$th commutator defined by n indeterminates
$x_1, x_2, \ldots , x_n$. It is shown that L satisfies the rule
$$ \begin{align*}L(p_n(A_1, A_2, \ldots, A_n))=\sum_{k=1}^{n}p_n(A_1, \ldots, A_{k-1}, L(A_k), A_{k+1}, \ldots, A_n) \end{align*} $$
for all
$A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ if and only if there exist a linear derivation
$D\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ and a linear mapping
$H\colon \text {Alg}\mathcal {N}\longrightarrow \mathbb {C}I$ vanishing on each
$(n-1)\,$th commutator
$p_n(A_1,A_2,\ldots , A_n)$ for all
$A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ such that
$L(A)=D(A)+H(A)$ for all
$A\in \text {Alg}\mathcal {N}$. We also propose some related topics for future research.