Let   $\mathbb{G}$  be a step-two nilpotent group of
 $\mathbb{G}$  be a step-two nilpotent group of   $\text{H}$ -type with Lie algebra
 $\text{H}$ -type with Lie algebra   $\mathfrak{G}\,=\,V\,\oplus \,\text{t}$ . We define a class of vector fields
 $\mathfrak{G}\,=\,V\,\oplus \,\text{t}$ . We define a class of vector fields   $X\,=\,\left\{ {{X}_{j}} \right\}$  on
 $X\,=\,\left\{ {{X}_{j}} \right\}$  on   $\mathbb{G}$  depending on a real parameter
 $\mathbb{G}$  depending on a real parameter   $k\,\ge \,1$ , and we consider the corresponding
 $k\,\ge \,1$ , and we consider the corresponding   $p$ -Laplacian operator
 $p$ -Laplacian operator   ${{L}_{p,\,k}}u\,=\,di{{v}_{X}}\left( {{\left| {{\nabla }_{X}}u \right|}^{p-2}}{{\nabla }_{X}}u \right)$ . For
 ${{L}_{p,\,k}}u\,=\,di{{v}_{X}}\left( {{\left| {{\nabla }_{X}}u \right|}^{p-2}}{{\nabla }_{X}}u \right)$ . For   $k\,=\,1$  the vector fields
 $k\,=\,1$  the vector fields   $X\,=\,\left\{ {{X}_{j}} \right\}$  are the left invariant vector fields corresponding to an orthonormal basis of
 $X\,=\,\left\{ {{X}_{j}} \right\}$  are the left invariant vector fields corresponding to an orthonormal basis of   $V$ ; for
 $V$ ; for   $\mathbb{G}$  being the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental solution for the operator
 $\mathbb{G}$  being the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental solution for the operator   ${{L}_{p,\,k}}$  and as an application, we get a Hardy type inequality associated with
 ${{L}_{p,\,k}}$  and as an application, we get a Hardy type inequality associated with   $X$ .
 $X$ .