To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For Γ a finite subgroup of $\mathrm{SL}_2(\mathbb{C})$ and $n \geq 1$, we study the fibres of the Procesi bundle over the Γ-fixed points of the Hilbert scheme of n points in the plane. For each irreducible component of this fixed point locus, our approach reduces the study of the fibres of the Procesi bundle, as an $(\mathfrak{S}_n \times \Gamma)$-module, to the study of the fibres of the Procesi bundle over an irreducible component of dimension zero in a smaller Hilbert scheme. When Γ is of type A, our main result shows, as a corollary, that the fibre of the Procesi bundle over the monomial ideal associated with a partition λ is induced, as an $(\mathfrak{S}_n \times \Gamma)$-module, from the fibre of the Procesi bundle over the monomial ideal associated with the core of λ. We give different proofs of this corollary in two edge cases using only representation theory and symmetric functions.
We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also prove, along the way, a result of independent interest, giving sufficient conditions for smoothness of the total space of the relative compactified Jacobian of a family of locally planar curves.
We show that if X is a smooth complex projective surface with torsion-free cohomology, then the Hilbert scheme $X^{[n]}$ has torsion-free cohomology for every natural number n. This extends earlier work by Markman on the case of Poisson surfaces. The proof uses Gholampour-Thomas’s reduced obstruction theory for nested Hilbert schemes of surfaces.
The Severi variety $V_{d,n}$ of plane curves of a given degree $d$ and exactly $n$ nodes admits a map to the Hilbert scheme $\mathbb{P}^{2[n]}$ of zero-dimensional subschemes of $\mathbb{P}^{2}$ of degree $n$. This map assigns to every curve $C\in V_{d,n}$ its nodes. For some $n$, we consider the image under this map of many known divisors of the Severi variety and its partial compactification. We compute the divisor classes of such images in $\text{Pic}(\mathbb{P}^{2[n]})$ and provide enumerative numbers of nodal curves. We also answer directly a question of Diaz–Harris [‘Geometry of the Severi variety’, Trans. Amer. Math. Soc.309 (1988), 1–34] about whether the canonical class of the Severi variety is effective.
For each non-negative integer n we define the nth Nash blowup of an algebraic variety, and call them all higher Nash blowups. When n=1, it coincides with the classical Nash blowup. We study higher Nash blowups of curves in detail and prove that any curve in characteristic zero can be desingularized by its nth Nash blowup with n large enough. Moreover, we completely determine for which n the nth Nash blowup of an analytically irreducible curve singularity in characteristic zero is normal, in terms of the associated numerical monoid.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.