Let
$\operatorname {\mathrm {{\rm G}}}(n)$ be equal to either
$\operatorname {\mathrm {{\rm PO}}}(n,1),\operatorname {\mathrm {{\rm PU}}}(n,1)$ or
$\operatorname {\mathrm {\textrm {PSp}}}(n,1)$ and let
$\Gamma \leq \operatorname {\mathrm {{\rm G}}}(n)$ be a uniform lattice. Denote by
$\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}}$ the hyperbolic space associated to
$\operatorname {\mathrm {{\rm G}}}(n)$, where
$\operatorname {\mathrm {{\rm K}}}$ is a division algebra over the reals of dimension d. Assume
$d(n-1) \geq 2$.
In this article we generalise natural maps to measurable cocycles. Given a standard Borel probability
$\Gamma $-space
$(X,\mu _X)$, we assume that a measurable cocycle
$\sigma :\Gamma \times X \rightarrow \operatorname {\mathrm {{\rm G}}}(m)$ admits an essentially unique boundary map
$\phi :\partial _\infty \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \times X \rightarrow \partial _\infty \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ whose slices
$\phi _x:\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ are atomless for almost every
$x \in X$. Then there exists a
$\sigma $-equivariant measurable map
$F: \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \times X \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ whose slices
$F_x:\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ are differentiable for almost every
$x \in X$ and such that
$\operatorname {\mathrm {\textrm {Jac}}}_a F_x \leq 1$ for every
$a \in \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}}$ and almost every
$x \in X$. This allows us to define the natural volume
$\operatorname {\mathrm {\textrm {NV}}}(\sigma )$ of the cocycle
$\sigma $. This number satisfies the inequality
$\operatorname {\mathrm {\textrm {NV}}}(\sigma ) \leq \operatorname {\mathrm {\textrm {Vol}}}(\Gamma \backslash \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}})$. Additionally, the equality holds if and only if
$\sigma $ is cohomologous to the cocycle induced by the standard lattice embedding
$i:\Gamma \rightarrow \operatorname {\mathrm {{\rm G}}}(n) \leq \operatorname {\mathrm {{\rm G}}}(m)$, modulo possibly a compact subgroup of
$\operatorname {\mathrm {{\rm G}}}(m)$ when
$m>n$.
Given a continuous map
$f:M \rightarrow N$ between compact hyperbolic manifolds, we also obtain an adaptation of the mapping degree theorem to this context.