To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
where $\mathbb{B}^N$ is the disc model of the Hyperbolic space and $\Delta_{\mathbb{B}^N}$ denotes the Laplace–Beltrami operator with $N \geq 2$, $V:\mathbb{B}^N \to \mathbb{R}$ and $f:\mathbb{R} \to \mathbb{R}$ are continuous functions that satisfy some technical conditions. With different types of the potential V, by introducing some new tricks handling the hurdle that the Hyperbolic space is not a compact manifold, we are able to obtain at least a positive ground state solution using variational methods.
As some applications for the methods adopted above, we derive the existence of normalized solutions to the elliptic problems
where a > 0, $\mu\in \mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier and f is a continuous function that fulfils the L2-subcritical or L2-supercritical growth. We do believe that it seems the first results to deal with normalized solutions for the Schrödinger equations in the Hyperbolic space.
where $\Omega\subset \mathbb{R}^N(N\ge3)$ denotes a smooth bounded domain, ν represents the unit outer normal vector to $\partial \Omega$, c is a positive constant, and λ acts as a Lagrange multiplier. When the non-linearity f exhibits a general mass supercritical growth at infinity, we establish the existence of normalized solutions, which are not necessarily positive solutions and can be characterized as mountain pass type critical points of the associated constraint functional. Our approach provides a uniform treatment of various non-linearities, including cases such as $f(u)=|u|^{p-2}u$, $|u|^{q-2}u+ |u|^{p-2}u$, and $-|u|^{q-2}u+|u|^{p-2}u$, where $2 \lt q \lt 2+\frac{4}{N} \lt p \lt 2^*$. The result is obtained through a combination of a minimax principle with Morse index information for constrained functionals and a novel blow-up analysis for the NLS equation under Neumann boundary conditions.
In this article, we study the following Schrödinger equation
\begin{align*}\begin{cases}-\Delta u -\frac{\mu}{|x|^2} u+\lambda u =f(u), &\text{in}~ \mathbb{R}^N\backslash\{0\},\\\int_{\mathbb{R}^{N}}|u|^{2}\mathrm{d} x=a, & u\in H^1(\mathbb{R}^{N}),\end{cases}\end{align*}
where $N\geq 3$, a > 0, and $\mu \lt \frac{(N-2)^2}{4}$. Here $\frac{1}{|x|^2} $ represents the Hardy potential (or ‘inverse-square potential’), λ is a Lagrange multiplier, and the nonlinearity function f satisfies the general Sobolev critical growth condition. Our main goal is to demonstrate the existence of normalized ground state solutions for this equation when $0 \lt \mu \lt \frac{(N-2)^2}{4}$. We also analyse the behaviour of solutions as $\mu\to0^+$ and derive the existence of normalized ground state solutions for the limiting case where µ = 0. Finally, we investigate the existence of normalized solutions when µ < 0 and analyse the asymptotic behaviour of solutions as $\mu\to 0^-$.
where $a, \epsilon, \eta \gt 0$, q is L2-subcritical, p is L2-supercritical, $\lambda\in \mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier and h is a positive and continuous function. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of h when ϵ is small enough. The solutions obtained are local minimizers and probably not ground state solutions for the lack of symmetry of the potential h. Secondly, the stability of several different sets consisting of the local minimizers is analysed. Compared with the results of the corresponding autonomous equation, the appearance of the potential h increases the number of the local minimizers and the number of the stable sets. In particular, our results cover the Sobolev critical case $p=2N/(N-2)$.
where $\Omega =\mathbb {R}^N$ or $\mathbb {R}^N\setminus \Omega$ is a compact set, $\rho >0$, $V\ge 0$ (also $V\equiv 0$ is allowed), $p\in (2,2+\frac 4 N)$. The existence of a positive solution $\bar u$ is proved when $V$ verifies a suitable decay assumption (Dρ), or if $\|V\|_{L^q}$ is small, for some $q\ge \frac N2$ ($q>1$ if $N=2$). No smallness assumption on $V$ is required if the decay assumption (Dρ) is fulfilled. There are no assumptions on the size of $\mathbb {R}^N\setminus \Omega$. The solution $\bar u$ is a bound state and no ground state solution exists, up to the autonomous case $V\equiv 0$ and $\Omega =\mathbb {R}^N$.
We consider the mass-critical non-linear Schrödinger equation on non-compact metric graphs. A quite complete description of the structure of the ground states, which correspond to global minimizers of the energy functional under a mass constraint, is provided by Adami, Serra and Tilli in [R. Adami, E. Serra and P. Tilli. Negative energy ground states for the L2-critical NLSE on metric graphs. Comm. Math. Phys. 352 (2017), 387–406.] , where it is proved that existence and properties of ground states depend in a crucial way on both the value of the mass, and the topological properties of the underlying graph. In this paper we address cases when ground states do not exist and show that, under suitable assumptions, constrained local minimizers of the energy do exist. This result paves the way to the existence of stable solutions in the time-dependent equation in cases where the ground state energy level is not achieved.
In this paper, we study the existence, nonexistence and mass concentration of L2-normalized solutions for nonlinear fractional Schrödinger equations. Comparingwith the Schrödinger equation, we encounter some new challenges due to the nonlocal nature of the fractional Laplacian. We first prove that the optimal embedding constant for the fractional Gagliardo–Nirenberg–Sobolev inequality can be expressed by exact form, which improves the results of [17, 18]. By doing this, we then establish the existence and nonexistence of L2-normalized solutions for this equation. Finally, under a certain type of trapping potentials, by using some delicate energy estimates we present a detailed analysis of the concentration behavior of L2-normalized solutions in the mass critical case.
We consider the existence of normalized solutions in H1(ℝN) × H1(ℝN) for systems of nonlinear Schr¨odinger equations, which appear in models for binary mixtures of ultracold quantum gases. Making a solitary wave ansatz, one is led to coupled systems of elliptic equations of the form
and we are looking for solutions satisfying
where a1> 0 and a2> 0 are prescribed. In the system, λ1 and λ2 are unknown and will appear as Lagrange multipliers. We treat the case of homogeneous nonlinearities, i.e. , with positive constants β, μi, pi, ri. The exponents are Sobolev subcritical but may be L2-supercritical. Our main result deals with the case in which in dimensions 2 ≤ N ≤ 4. We also consider the cases in which all of these numbers are less than 2 + 4/N or all are bigger than 2 + 4/N.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.