Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T19:14:32.633Z Has data issue: false hasContentIssue false

Chapter 11 - The non-fluent/agrammatic variant of primary progressive aphasia

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Serieux, P. (1893). Sur un cas de surdite verbale pure. Revue Medicale, 13, 733750.Google Scholar
Mesulam, M. M. (1982). Slowly progressive aphasia without generalized dementia. Annals of Neurology, 11, 592598.CrossRefGoogle ScholarPubMed
Snowden, J. S., Neary, D., Mann, D. M. A., Goulding, P. J., & Testa, H. J. (1992). Progressive language disorder due to lobar atrophy. Annals of Neurology, 31, 174183.CrossRefGoogle ScholarPubMed
Grossman, M., Mickanin, J., Onishi, K., Hughes, E., D’Esposito, M., Ding, X. S., et al. (1996). Progressive non-fluent aphasia: Language, cognitive and PET measures contrasted with probable Alzheimer’s disease. Journal of Cognitive Neuroscience, 8, 135154.CrossRefGoogle Scholar
Lieberman, A. P., Trojanowski, J. Q., Lee, V. M. Y., Balin, B., Ding, X. S., Greenberg, J., et al. (1998). Cognitive, neuroimaging, and pathologic studies in a patient with Pick’s disease. Annals of Neurology, 43, 259264.CrossRefGoogle Scholar
Turner, R. S., Kenyon, L. C., Trojanowski, J. Q., Gonatas, N., & Grossman, M. (1996). Clinical, neuroimaging, and pathologic features of progressive non-fluent aphasia. Annals of Neurology, 39, 166173.CrossRefGoogle Scholar
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014.CrossRefGoogle ScholarPubMed
Mesulam, M.-M., Wieneke, C., Thompson, C. K., Rogalski, E., & Weintraub, S. (2012). Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain, 135(5), 15371553.CrossRefGoogle ScholarPubMed
Sajjadi, S. A., Patterson, K., Arnold, R. J., Watson, P. C., & Nestor, P. J. (2012). Primary progressive aphasia. Neurology, 78(21), 16701677.CrossRefGoogle ScholarPubMed
Medina, J., & Weintraub, S. (2007). Depression in primary progressive aphasia. Journal of Geriatric Psychiatry and Neurology, 20(3), 153160.CrossRefGoogle ScholarPubMed
Hodges, J. R., & Patterson, K. (2007). Semantic dementia: A unique clinicopathological syndrome. Lancet Neurology, 6, 10041014.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Dronkers, N. F., Rankin, K. P., Ogar, J. M., Phengrasamy, L., Rosen, H. J., et al. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55, 335346.CrossRefGoogle ScholarPubMed
Grossman, M. (2010). Primary progressive aphasia: Clinical-pathological correlations. Nature Reviews Neurology, 6, 8897.CrossRefGoogle Scholar
Irwin, D. J., Trojanowski, J. Q., & Grossman, M. (2013). Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer’s disease. [Review]. Frontiers in Aging Neuroscience, 5, 111. &Google ScholarGoogle Scholar
Ash, S., Evans, E., O’Shea, J., Powers, J. M., Boller, A., Weinberg, D., et al. (2013). Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology, 81(4), 329336.CrossRefGoogle ScholarPubMed
Ash, S., Moore, P., Vesely, L., Gunawardena, D., McMillan, C., Anderson, C., et al. (2009). Non-fluent speech in frontotemporal lobar degeneration. Journal of Neurolinguistics, 22, 370383.CrossRefGoogle Scholar
Gunawardena, D., Ash, S., McMillan, C., Avants, B., Gee, J., & Grossman, M. (2010). Why are patients with progressive nonfluent aphasia nonfluent? Neurology, 75(7), 588594.CrossRefGoogle ScholarPubMed
Rogalski, E., Cobia, D., Harrison, T. M., Wieneke, C., Thompson, C. K., Weintraub, S., et al. (2011). Anatomy of language impairments in primary progressive aphasia. The Journal of Neuroscience, 31(9), 33443350.CrossRefGoogle ScholarPubMed
Wilson, S. M., Henry, M. L., Besbris, M., Ogar, J. M., Dronkers, N. F., Jarrold, W., et al. (2010). Connected speech production in three variants of primary progressive aphasia. Brain, 133(7), 20692088.CrossRefGoogle ScholarPubMed
Josephs, K. A., Duffy, J. R., Strand, E. A., Whitwell, J. L., Layton, K. F., Parisi, J. E., et al. (2006). Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain, 129, 13851398.CrossRefGoogle ScholarPubMed
Rohrer, J. D., Rossor, M. N., & Warren, J. D. (2010a). Apraxia in progressive nonfluent aphasia. Journal of Neurology, 257(4), 569574.CrossRefGoogle ScholarPubMed
Ash, S., McMillan, C., Gunawardena, D., Avants, B., Morgan, B., Khan, A., et al. (2010). Speech errors in progressive non-fluent aphasia. Brain and Language, 113, 1320.CrossRefGoogle ScholarPubMed
Josephs, K.A., & Duffy, J.R. (2008). Apraxia of speech and nonfluent aphasia: a new clinical marker for corticobasal degeneration and progressive supranuclear palsy. Current Opinion in Neurology, 21(6), 688692.CrossRefGoogle ScholarPubMed
Josephs, K. A., Duffy, J. R., Strand, E. A., Machulda, M. M., Senjem, M. L., Master, A. V., et al. (2012). Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain, 135(Pt 5), 15221536.CrossRefGoogle ScholarPubMed
Rohrer, J. D., Rossor, M. N., & Warren, J. D. (2010). Syndromes of nonfluent primary progressive aphasia: A clinical and neurolinguistic analysis. Neurology, 75(7), 603610.CrossRefGoogle ScholarPubMed
Bak, T. H., & Hodges, J. R. (2003). Kissing and dancing – a test to distinguish the lexical and conceptual contributions to noun/verb and action/object dissociation. Preliminary results in patients with frontotemporal dementia. Journal of Neurolinguistics, 16, 169181.Google Scholar
Hillis, A. E., Oh, S., & Ken, L. (2004). Deterioration of naming nouns versus verbs in primary progressive aphasia. Annals of Neurology, 55, 268275.CrossRefGoogle ScholarPubMed
Mesulam, M. M., Wieneke, C., Rogalski, E., Cobia, D., Thompson, C. K., & Weintraub, S. (2009). Quantitative template for subtyping primary progressive aphasia. Archives of Neurology, 66(12), 15451551.CrossRefGoogle ScholarPubMed
Peelle, J. E., Troiani, V., Gee, J. C., Moore, P., McMillan, C. T., Vesely, L., et al. (2008). Sentence comprehension and voxel-based morphometry in progressive nonfluent aphasia, semantic dementia, and nonaphasic frontotemporal dementia. Journal of Neurolinguistics, 21(5), 418432.CrossRefGoogle ScholarPubMed
Woolley, S. C., York, M. K., Moore, D. H., Strutt, A. M., Murphy, J., Schulz, P. E., et al. (2010). Detecting frontotemporal dysfunction in ALS: Utility of the ALS Cognitive Behavioral Screen (ALS-CBS). Amyotrophic Lateral Sclerosis, 11(3), 303311.CrossRefGoogle Scholar
Weintraub, S., Mesulam, M.-M., Wieneke, C., Rademaker, A., Rogalski, E. J., & Thompson, C. K. (2009). The Northwestern Anagram Test: Measuring sentence production in primary progressive aphasia. American Journal of Alzheimer’s Disease and Other Dementias, 24(5), 408416.CrossRefGoogle ScholarPubMed
Charles, D., Olm, C., Powers, J. M., Ash, S., Irwin, D. J., McMillan, C. T., et al. (2014). Grammatical comprehension deficits in non-fluent/agrammatic primary progressive aphasia. Journal of Neurology, Neurosurgery & Psychiatry, 85(3), 249256.CrossRefGoogle ScholarPubMed
Wilson, S. M., Dronkers, N. F., Ogar, J. M., Jang, J., Growdon, M. E., Agosta, F., et al. (2010). Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. The Journal of Neuroscience, 30(50), 1684516854.CrossRefGoogle ScholarPubMed
Grossman, M., Rhee, J., & Antiquena, P. (2005). Sentence processing in frontotemporal dementia. Cortex, 41, 764777.CrossRefGoogle ScholarPubMed
Peelle, J. E., Cooke, A., Moore, P., Vesely, L., & Grossman, M. (2007). Syntactic and thematic components of sentence processing in progressive nonfluent aphasia and nonaphasic frontotemporal dementia. Journal of Neurolinguistics, 20, 482494.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Brambati, S. M., Ginex, V., Ogar, J., Dronkers, N. F., Marcone, A., et al. (2008). The logopenic/phonological variant of primary progressive aphasia. Neurology, 71(16), 12271234.CrossRefGoogle ScholarPubMed
Rohrer, J. D., Ridgway, G. R., Crutch, S. J., Hailstone, J., Goll, J. C., Clarkson, M. J., et al. (2009). Progressive logopenic/phonological aphasia: Erosion of the language network. Neuroimage, 49(1), 984993.CrossRefGoogle ScholarPubMed
Hu, W. T., McMillan, C., Libon, D., Leight, S., Forman, M., Lee, V. M.-Y., et al. (2010). Multimodal predictors for Alzheimer disease in nonfluent primary progressive aphasia. Neurology, 75(7), 595602.CrossRefGoogle ScholarPubMed
Nestor, P. J., Balan, K., Cheow, H. K., Fryer, T. D., Knibb, J. A., Xuereb, J. H., et al. (2007). Nuclear imaging can predict pathologic diagnosis in progressive nonfluent aphasia. Neurology, 68(3), 238239.CrossRefGoogle ScholarPubMed
Josephs, K. A., Whitwell, J. L., Duffy, J. R., Vanvoorst, W. A., Strand, E. A., Hu, W. T., et al. (2008). Progressive aphasia secondary to Alzheimer disease vs. FTLD pathology. Neurology, 70(1), 2534.CrossRefGoogle ScholarPubMed
Mesulam, M.-M., Wicklund, A., Johnson, N., Rogalski, E., Leger, G. C., Rademaker, A., et al. (2008). Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Annals of Neurology, 63(6), 709719.CrossRefGoogle ScholarPubMed
McMillan, C. T., Avants, B., Irwin, D. J., Toledo, J. B., Wolk, D. A., Van Deerlin, V. M., et al. (2013). Can MRI screen for CSF biomarkers in neurodegenerative disease? Neurology, 80(2), 132138.CrossRefGoogle ScholarPubMed
McMillan, C. T., Brun, C., Siddiqui, S., Churgin, M., Libon, D., Yushkevich, P., et al. (2012). White matter imaging contributes to the multimodal diagnosis of frontotemporal lobar degeneration. Neurology, 78(22), 17611768.CrossRefGoogle Scholar
Irwin, D. J., McMillan, C. T., B., T. J., Arnold, S. E., Shaw, L. M., Wang, L.-S., et al. (2012). Comparison of cerebrospinal fluid levels of tau and aBeta 1–42 in Alzheimer disease and frontotemporal degeneration using 2 analytical platforms. Archives of Neurology, 69(8), 10181025.CrossRefGoogle ScholarPubMed
Rabinovici, G. D., Jagust, W. J., Furst, A. J., Ogar, J. M., Racine, C. A., Mormino, E. C., et al. (2008). Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Annals of Neurology, 64(4), 388401.CrossRefGoogle ScholarPubMed
Grossman, M., & Moore, P. (2005). A longitudinal study of sentence comprehension difficulty in primary progressive aphasia. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 644649.CrossRefGoogle ScholarPubMed
Rogalski, E., Cobia, D., Harrison, T. M., Wieneke, C., Weintraub, S., & Mesulam, M.-M. (2011). Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology, 76(21), 18041810.CrossRefGoogle ScholarPubMed
Sapolsky, D., Bakkour, A., Negreira, A., Nalipinski, P., Weintraub, S., Mesulam, M.-M., et al. (2010). Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia. Neurology, 75(4), 358366.CrossRefGoogle ScholarPubMed
Libon, D. J., Xie, S. X., Wang, X., Massimo, L., Moore, P., Vesely, L., et al. (2009). Neuropsychological decline in frontotemporal lobar degeneration: A longitudinal analysis. Neuropsychology, 23(3), 337346.CrossRefGoogle ScholarPubMed
Blair, M., Marczinski, C. A., Davis-Faroque, N., & Kertesz, A. (2007). A longitudinal study of language decline in Alzheimer’s disease and frontotemporal dementia. Journal of the International Neuropsychological Society, 13, 237245.CrossRefGoogle ScholarPubMed
Libon, D. J., Rascovsky, K., Gross, R. G., White, M. T., Xie, S. X., Dreyfuss, M., et al. (2011). The Philadelphia Brief Assessment of Cognition (PBAC): A validated screening measure for dementia. The Clinical Neuropsychologist, 25(8), 13141330.CrossRefGoogle ScholarPubMed
Libon, D. J., Xie, S. X., Moore, P., Farmer, J., Antani, S., McCawley, G., et al. (2007). Patterns of neuropsychological impairment in frontotemporal dementia. Neurology, 68, 369375.CrossRefGoogle ScholarPubMed
Libon, D. J., Xie, S., Wang, X., Massimo, L., Moore, P., Vesely, L., et al. (2008). Neuropsychological decline in frontotemporal lobar degeneration: A longitudinal analysis. Neuropsychology, 23, 337346.CrossRefGoogle Scholar
Murray, R., Neumann, M., Forman, M. S., Farmer, J., Massimo, L., Rice, A., et al. (2007). Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology, 68, 12741283.CrossRefGoogle ScholarPubMed
Banks, S. J., & Weintraub, S. (2008). Neuropsychiatric symptoms in behavioral variant frontotemporal dementia and primary progressive aphasia. Journal of Geriatric Psychiatry and Neurology, 21(2), 133141.CrossRefGoogle ScholarPubMed
Rohrer, J. D., & Warren, J. D. (2010). Phenomenology and anatomy of abnormal behaviours in primary progressive aphasia. Journal of the Neurological Sciences, 293(1–2), 3538.CrossRefGoogle ScholarPubMed
Kiernan, M. C. (2011). Amyotrophic lateral sclerosis. Lancet, 377, 942955.CrossRefGoogle ScholarPubMed
Heidler-Gary, J., & Hillis, A. E. (2007). Distinctions between the dementia in amyotrophic lateral sclerosis with frontotemporal dementia and the dementia of Alzheimer’s disease. Amyotrophic Lateral Sclerosis, 8(5), 276282.CrossRefGoogle ScholarPubMed
Lomen-Hoerth, C., Anderson, T., & Miller, B. L. (2002). The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology, 59, 10771079.CrossRefGoogle ScholarPubMed
Chio, A., Calvo, A., Mazzini, L., Cantello, R., Mora, G., Moglia, C., et al. (2012). Extensive genetics of ALS: A population-based study in Italy. Neurology, 79(19), 19831989.CrossRefGoogle Scholar
DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72(2), 245256.CrossRefGoogle ScholarPubMed
Irwin, D. J., McMillan, C. T., Brettschneider, J., Libon, D. J., Powers, J. M., Rascovsky, K., et al. (2013). Cognitive decline and reduced survival in C9ORF72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 84(2), 163169.CrossRefGoogle ScholarPubMed
Mahoney, C. J., Beck, J., Rohrer, J. D., Lashley, T., Mok, K., Shakespeare, T., et al. (2012). Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain, 135(3), 736750.CrossRefGoogle ScholarPubMed
Renton, A. E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J. R., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72(2), 257268.CrossRefGoogle ScholarPubMed
Geser, F., Martinez-Lage, M., Robinson, J., Uryu, K., Neumann, M., Brandmeir, N. J., et al. (2009). Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol, 66(2), 180189.CrossRefGoogle ScholarPubMed
Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micseny, M. C., Chou, T. T., et al. (2006). Ubiquinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclereosis. Science, 314, 130133.CrossRefGoogle Scholar
Brettschneider, J., Del Tredici, K., Irwin, D. J., Grossman, M., Robinson, J. L., Toledo, J. B., et al. (2014). Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathologica, 125, 117.Google Scholar
Brettschneider, J., Del Tredici, K., Toledo, J. B., Robinson, J. L., Irwin, D. J., Grossman, M., et al. (2013). Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Annals of Neurology, 74(1), 2038.CrossRefGoogle ScholarPubMed
Turner, M. R. (2012). Neuroimaging in amyotrophic lateral sclerosis. Biomarkers in Medicine, 6, 319337.CrossRefGoogle ScholarPubMed
Turner, M. R., Hardiman, O., Benatar, M., Brooks, B. R., Chio, A., de Carvalho, M., et al. (2013). Controversies and priorities in amyotrophic lateral sclerosis. The Lancet Neurology, 12(3), 310322.CrossRefGoogle ScholarPubMed
Turner, M. R., Kiernan, M. C., Leigh, P. N., & Talbot, K. (2009). Biomarkers in amyotrophic lateral sclerosis. Lancet Neurology, 8, 94109.CrossRefGoogle ScholarPubMed
Abrahams, S. (1996). Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain, 119, 21052120.CrossRefGoogle ScholarPubMed
Abrahams, S., Newton, J., Niven, E., Foley, J., & Bak, T. H. (2014). Screening for cognition and behaviour changes in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 5(1–2), 914.CrossRefGoogle Scholar
Goldstein, L. H., & Abrahams, S. (2013). Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. The Lancet Neurology, 12(4), 368380.CrossRefGoogle ScholarPubMed
Evans, J., Olm, C., Elman, L., McCluskey, L., Boller, A., Rascovsky, K., et al. (2015). Impaired cognitive flexibility in amyotrophic lateral sclerosis. Cognitive and Behavioral Neurology, 28 (1), 1726.CrossRefGoogle ScholarPubMed
Libon, D. J., McMillan, C., Avants, B., Boller, A., Morgan, B., Burkholder, L., et al. (2012). Deficit in concept formation in amyotrophic lateral sclerosis. Neuropsychology, 26, 422429.CrossRefGoogle ScholarPubMed
Taylor, L. J., Brown, R. G., Tsermentseli, S., Al-Chalabi, A., Shaw, C. E., Ellis, C. M., et al. (2013). Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? Journal of Neurology, Neurosurgery & Psychiatry, 84(5), 494498.CrossRefGoogle ScholarPubMed
Ash, S., Menaged, A., Olm, C., McMillan, C. T., Boller, A., Irwin, D. J., et al. (2014). Narrative discourse deficits in amyotrophic lateral sclerosis. Neurology, 83, 520528.CrossRefGoogle ScholarPubMed
Ash, S., Olm, C., McMillan, C. T., Boller, A., Irwin, D. J., McCluskey, L., et al. (2015). Deficits in sentence expression in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16(1–2), 31–9.CrossRefGoogle ScholarPubMed
Bak, T. H., & Chandran, S. (2012). What wires together dies together: Verbs, actions and neurodegeneration in motor neuron disease. Cortex, 48(7), 936944.CrossRefGoogle ScholarPubMed
Bak, T. H., & Hodges, J. R. (2004). The effects of motor neurone disease on language: Further evidence. Brain and Language, 89, 354361.CrossRefGoogle ScholarPubMed
Grossman, M., Anderson, C., Khan, A., Avants, B., Elman, L., & McCluskey, L. (2008). Impaired action knowledge in amyotrophic lateral sclerosis. Neurology, 71(18), 13961401.CrossRefGoogle ScholarPubMed
York, C., Olm, C., Boller, A., McCluskey, L., Elman, L., Haley, J., et al. (2014). Action verb comprehension in amyotrophic lateral sclerosis and Parkinson’s disease. Journal of Neurology, 261(6), 10731079.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617645.CrossRefGoogle ScholarPubMed
Hauk, O., Johnsrude, I., & Pulvermuller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301307.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Murray, R. C., Rankin, K. P., Weiner, M. W., & Miller, B. L. (2004). Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: A case report. Neurocase, 10, 426436.CrossRefGoogle ScholarPubMed
Deramecourt, V., Lebert, F., Debachy, B., Mackowiak-Cordoliani, M. A., Bombois, S., Kerdraon, O., et al. (2010). Prediction of pathology in primary progressive language and speech disorders. Neurology, 74(1), 4249.CrossRefGoogle ScholarPubMed
Josephs, K. A., Duffy, J. R., Strand, E. A., Machulda, M. M., Senjem, M. L., Gunter, J. L., et al. (2014). The evolution of primary progressive apraxia of speech. Brain, 137(10), 27832795.CrossRefGoogle ScholarPubMed
Sonty, S. P., Mesulam, M. M., Thompson, C. K., Johnson, N., Weintraub, S., Parrish, T. B., et al. (2003). Primary progressive aphasia: PPA and the language network. Annals of Neurology, 53, 3549.CrossRefGoogle ScholarPubMed
Grossman, M. (2012). The non-fluent/agrammatic variant of primary progressive aphasia. The Lancet Neurology, 11(6), 545555.CrossRefGoogle ScholarPubMed
Rohrer, J. D., Warren, J. D., Modat, M., Ridgway, G. R., Douiri, A., Rossor, M. N., et al. (2009). Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology, 72(18), 15621569.CrossRefGoogle ScholarPubMed
Nestor, P. J., Graham, N. L., Fryer, T. D., Williams, G. B., Patterson, K., & Hodges, J. R. (2003). Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain, 126, 24062418.CrossRefGoogle ScholarPubMed
Forman, M. S., Zhukareva, V., Bergeron, C. B., Chin, S. S. M., Grossman, M., Clark, C., et al. (2002). Signature tau neuropathology in gray and white matter of corticobasal degeneration. American Journal of Pathology, 160, 20452053.CrossRefGoogle ScholarPubMed
Grossman, M., Powers, J. M., Ash, S., McMillan, C., Burkholder, L., D., I., et al. (2013). Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain and Language, 127, 106120.CrossRefGoogle ScholarPubMed
Galantucci, S., Tartaglia, M. C., Wilson, S. M., Henry, M. L., Filippi, M., Agosta, F., et al. (2011). White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain, 134(Pt 10), 30113029.CrossRefGoogle ScholarPubMed
McMillan, C. T., Irwin, D. J., Avants, B. B., Powers, J. M., Cook, P. A., Toledo, J. B., et al. (2013). White matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery & Psychiatry, 84(9), 949955.CrossRefGoogle ScholarPubMed
Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 13571392.CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews of Neuroscience, 8, 393402.CrossRefGoogle ScholarPubMed
Rabinovici, G. D., Furst, A. J., O’Neil, J. P., Racine, C. A., Mormino, E. C., Baker, S. L., et al. (2007). 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology, 68(15), 12051212.CrossRefGoogle ScholarPubMed
Rabinovici, G. D., Rosen, H. J., Alkalay, A., Kornak, J., Furst, A. J., Agarwal, N., et al. (2011). Amyloid vs. FDG-PET in the differential diagnosis of AD and FTLD. Neurology, 77(23), 20342042.CrossRefGoogle ScholarPubMed
Chien, D. T., Bahri, S., Szardenings, A. K., Walsh, J. C., Mu, F., Su, M.-Y., et al. (2013). Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. Journal of Alzheimer’s Disease, 34(2), 457468.CrossRefGoogle ScholarPubMed
Xia, C.-F., Arteaga, J., Chen, G., Gangadharmath, U., Gomez, L. F., Kasi, D., et al. (2013). [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 9(6), 666676.CrossRefGoogle Scholar
Vion-Dury, J., Rochefort, N., Michotey, P., Planche, D., & Ceccaldi, M. (2004). Proton magnetic resonance neurospectroscopy and EEG cartography in corticobasal degeneration: correlations with neuropsychological signs. Journal of Neurology, Neurosurgery & Psychiatry, 75(9), 13521355.CrossRefGoogle ScholarPubMed
Cooke, A., DeVita, C., Gee, J. C., Alsop, D., Detre, J., Chen, W., et al. (2003). Neural basis for sentence comprehension deficits in frontotemporal dementia. Brain and Language, 85, 211221.CrossRefGoogle ScholarPubMed
Seeley, W. W., Carlin, D. A., Allman, J. M., Macedo, M. N., Bush, C., Miller, B. L., et al. (2006). Early frontotemporal dementia targets neurons unique to apes and humans. Annals of Neurology, 60(6), 660667.CrossRefGoogle ScholarPubMed
Yokota, O., Tsuchiya, K., Arai, T., Yagishita, S., Matsubara, O., Mochizuki, A., et al. (2009). Clinicopathological characterization of Pick’s disease versus frontotemporal lobar degeneration with ubiquitin/TDP-43-positive inclusions. Acta Neuropathologica, 117(4), 429444.CrossRefGoogle ScholarPubMed
Snowden, J. S., Neary, D., & Mann, D. (2007). Frontotemporal lobar degeneration: clinical and pathological relationships. Acta Neuropathologica, 114(1), 3138.CrossRefGoogle ScholarPubMed
Mackenzie, I., Neumann, M., Bigio, E., Cairns, N., Alafuzoff, I., Kril, J., et al. (2009). Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica, 117(1), 1518.CrossRefGoogle ScholarPubMed
Mackenzie, I., Neumann, M., Bigio, E., Cairns, N., Alafuzoff, I., Kril, J., et al. (2010). Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathologica, 119(1), 14.CrossRefGoogle ScholarPubMed
Mackenzie, I. R., Baborie, A., Pickering-Brown, S., Plessis, D., Jaros, E., Perry, R., et al. (2006). Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathologica, 112(5), 539549.CrossRefGoogle ScholarPubMed
Sampathu, D. M., Neumann, M., Kwong, L. K., Chou, T. T., Micsenyi, M., Truax, A. C., et al. (2006). Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. American Journal of Pathology, 169, 13431352.CrossRefGoogle ScholarPubMed
Josephs, K. A., Stroh, A., Dugger, B., & Dickson, D. (2009). Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes. Acta Neuropathologica, 118(3), 349358.CrossRefGoogle ScholarPubMed
Snowden, J. S., Thompson, J. C., Stopford, C. L., Richardson, A. M. T., Gerhard, A., Neary, D., et al. (2011). The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain, 134(9), 24782492.CrossRefGoogle ScholarPubMed
Alladi, S., Xuereb, J., Bak, T., Nestor, P., Knibb, J. A., Patterson, K., et al. (2007). Focal cortical presentations of Alzheimer’s disease. Brain, 130(10), 26362645.CrossRefGoogle ScholarPubMed
Galton, C. J., Patterson, K., Xuereb, J., & Hodges, J. R. (2000). Atypical and typical presentations of Alzheimer’s disease: A clinical, neuropsychological, neuroimaging, and pathological study of 13 cases. Brain, 123, 484498.CrossRefGoogle ScholarPubMed
Grossman, M., Xie, S. X., Libon, D. J., Wang, X., Massimo, L., Moore, P., et al. (2008). Longitudinal decline in autopsy-defined frontotemporal lobar degeneration. Neurology, 70(22), 20362045.CrossRefGoogle ScholarPubMed
Hodges, J. R., Davies, R. R., Xuereb, J., Casey, B. J., Broe, M., Bak, T., et al. (2004). Clinicopathological correlates in frontotemporal dementia. Annals of Neurology, 56, 399406.CrossRefGoogle ScholarPubMed
Josephs, K. A., Petersen, R. C., Knopman, D. S., Boeve, B. F., Whitwell, J. L., Duffy, J. R., et al. (2006). Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology, 66, 4148.CrossRefGoogle ScholarPubMed
Kertesz, A., McMonagle, P., Blair, M., Davidson, W., & Munoz, D. G. (2005). The evolution and pathology of frontotemporal dementia. Brain, 128, 19962005.CrossRefGoogle ScholarPubMed
Knibb, J. A., Xuereb, J., Patterson, K., & Hodges, J. R. (2006). Clinical and pathological characterization of progressive aphasia. Annals of Neurology, 59(1), 156165.CrossRefGoogle ScholarPubMed
Knopman, D. S., Boeve, B. F., Parisi, J. E., Dickson, D. W., Smith, G. E., Ivnik, R. J., et al. (2005). Antemortem diagnosis of frontotemporal lobar degeneration. Annals of Neurology, 57, 480488.CrossRefGoogle ScholarPubMed
Rohrer, J. D., Lashley, T., Schott, J. M., Warren, J. D., Mead, S., Isaacs, A. M., et al. (2011). Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain, 134(9), 25652581.CrossRefGoogle ScholarPubMed
Gibbons, Z. C., Snowden, J. S., Thompson, J. C., Happe, F., Richardson, A., & Neary, D. (2007). Inferring thought and action in motor neuron disease. Neuropsychologia, 45, 196207.CrossRefGoogle Scholar
Goldman, J. S., Rademakers, R., Huey, E. D., Boxer, A. L., Mayeux, R., Miller, B. L., et al. (2011). An algorithm for genetic testing of frontotemporal lobar degeneration. Neurology, 76(5), 475483.CrossRefGoogle ScholarPubMed
Seelaar, H., Kamphorst, W., Rosso, S. M., Azmani, A., Masdjedi, R., de Koning, I., et al. (2008). Distinct genetic forms of frontotemporal dementia. Neurology, 71, 12201226.CrossRefGoogle ScholarPubMed
Wood, E. M., Falcone, D., Suh, E., Irwin, D. J., Chen-Plotkin, A., Lee, E. B., et al. (2013). Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurology, 70(11), 14111417.CrossRefGoogle ScholarPubMed
Sobrido, M. J., Abu-Khalil, A., Weintraub, S., Johnson, N., Quinn, B., Cummings, J., et al. (2003). Possible association of the tau H1/H1 genotype with primary progressive aphasia. Neurology, 60, 862864.CrossRefGoogle ScholarPubMed
Boeve, B. F., Tremont-Lukats, I. W., Waclawik, A. J., Murrell, J. R., Hermann, B., Jack, C. R. Jr., et al. (2005). Longitudinal characterization of two siblings with frontotemporal dementia and parkinsonism linked to chromosome 17 associated with the S305N tau mutation. Brain, 128, 752772.CrossRefGoogle ScholarPubMed
Bird, T. D., Nochlin, D., Poorkaj, P., Cherrier, M., Kaye, J., Payami, H., et al. (1999). A clinical pathological comparison of three families with frontotemporal dementia and identical mutations in the tau gene (P301L). Brain, 122(4), 741756.CrossRefGoogle ScholarPubMed
Boeve, B. F., & Hutton, M. (2008). Refining frontotemporal dementia with parkinsonism linked to chromosome 17: Introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). Arch Neurol, 65(4), 460464.CrossRefGoogle ScholarPubMed
Kelley, B. J., Haidar, W., Boeve, B. F., Baker, M., Graff-Radford, N. R., Krefft, T., et al. (2009). Prominent phenotypic variability associated with mutations in progranulin. Neurobiology of Aging, 30(5), 739751.CrossRefGoogle ScholarPubMed
Lendon, C. L., Lynch, T., Norton, J., McKeel, D. W., Busfield, F., Craddock, N., et al. (1998). Hereditary dysphasic disinhibition dementia: A frontotemporal dementia linked to 17 q21-22. Neurology, 50(6), 15461555.CrossRefGoogle Scholar
Lendon, C. L., Shears, S., & Busfield, F. (1994). Molecular genetics of hereditary dysphasic dementia. Neurobiology of Aging, 15, S128.CrossRefGoogle Scholar
Morris, J. C., Cole, M., Banker, B. Q., & Wright, D. (1984). Hereditary dysphasic dementia and the Pick–Alzheimer spectrum. Annals of Neurology, 16, 455466.CrossRefGoogle ScholarPubMed
Mukherjee, O., Pastor, P., Cairns, N. J., Chakraverty, C., Kauwe, J. S. K., Shears, S., et al. (2006). HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Annals of Neurology, 60(3), 314322.CrossRefGoogle ScholarPubMed
Davion, S., Johnson, N., Weintraub, S., Mesulam, M.-M., Engberg, A., Mishra, M., et al. (2007). Clinicopathologic correlation in PGRN mutations. Neurology, 69(11), 11131121.CrossRefGoogle ScholarPubMed
Mesulam, M.-M., Johnson, N., Krefft, T. A., Gass, J. M., Cannon, A. D., Adamson, J. L., et al. (2007). Progranulin mutations in primary progressive aphasia: The PPA1 and PPA3 families. Archives of Neurology, 64, 4347.CrossRefGoogle Scholar
Beck, J., Rohrer, J. D., Campbell, T., Isaacs, A., Morrison, K. E., Goodall, E. F., et al. (2008). A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain, 131(3), 706720.CrossRefGoogle ScholarPubMed
Le Ber, I., Camuzat, A., Hannequin, D., Pasquier, F., Guedj, E., Rovelet-Lecrux, A., et al. (2008). Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain, 131(3), 732746.CrossRefGoogle ScholarPubMed
Snowden, J. S., Pickering-Brown, S. M., Mackenzie, I. R., Richardson, A. M. T., Varma, A., Neary, D., et al. (2006). Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia. Brain, 129(11), 30913102.CrossRefGoogle ScholarPubMed
Leverenz, J. B., Yu, C. E., Montine, T. J., Steinbart, E., Bekris, L. M., Zabetian, C., et al. (2007). A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain, 130(5), 13601374.CrossRefGoogle ScholarPubMed
DeJesus-Hernandez, M. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72, 245256.CrossRefGoogle ScholarPubMed
Snowden, J. S., Rollinson, S., Thompson, J. C., Harris, J. M., Stopford, C. L., Richardson, A. M. T., et al. (2012). Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain, 135(Pt 3), 693708.CrossRefGoogle ScholarPubMed
Watts, G. D. J., Wymer, J., Kovach, M. J., Mehta, S. G., Mumm, S., Darvish, D., et al. (2004). Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature Genetics, 36(4), 377381.CrossRefGoogle ScholarPubMed
Skibinski, G., Parkinson, N. I., Brown, J. M., Chakrabarti, L., Lloyd, S. L., Hummerich, H., et al. (2005). Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genetics, 37, 806809.CrossRefGoogle ScholarPubMed
Chio, A., Calvo, A., Moglia, C., Restagno, G., Ossola, I., Brunetti, M., et al. (2010). Amyotrophic lateral sclerosis–frontotemporal lobar dementia in 3 families with p.Ala382Thr TARDBP mutations. Archives of Neurology, 67(8), 10021009.Google ScholarPubMed
Josephs, K. A., Hodges, J. R., Snowden, J. S., Mackenzie, I. R., Neumann, M., Mann, D., et al. (2011). Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathologica, 122(2), 137153.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×