To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The class of hyperbolic groups was introduced and studied in Gromov's paper [125]. In that paper a not necessarily finitely generated group is called hyperbolic if it is hyperbolic as a metric space, in the sense that the space has a hyperbolic inner product, which we define in 6.2.1 below. The group is called word-hyperbolic if it is finitely generated and hyperbolic with respect to the word metric. Since we are only concerned with finitely generated groups in this book, we shall from now on refer to such groups simply as hyperbolic groups.
The fact that there is a large variety of apparently different conditions on a finitely generated group that turn out to be equivalent to hyperbolicity (we present a list of several such conditions in Section 6.6) is itself a strong indication of the fundamental position that these groups occupy in geometric group theory. We have already encountered two of these conditions: groups having a Dehn presentation (or algorithm) in Section 3.5, and strongly geodesically automatic groups in Section 5.8.
Gromov's paper is generally agreed to be difficult to read, but there are several accessible accounts of the basic properties of hyperbolic groups, including those by Alonso et al. [5], Ghys and de la Harpe [94], Bridson and Haefliger [39, Part II, Section Γ] and Neumann and Shapiro [203].
Hyperbolicity conditions
We begin by comparing various notions of hyperbolicity. The definitions that we consider here apply to an arbitrary geodesic metric space, as defined in Section 1.6, but we are mainly interested in the case when the space is the Cayley graph of a finitely generated group.
Let be a geodesic metric space. A geodesic triangle xyz in Γ consists of three points x, y, z together with geodesic paths [xy], [yz] and [zx]. We can define hyperbolicity of Γ in terms of ‘thinness’ properties of geodesic triangles.
We prove that for every poset P, there is a constant CP such that the size of any family of subsets of {1, 2, . . ., n} that does not contain P as an induced subposet is at most
$$C_P{\binom{n}{\lfloor\gfrac{n}{2}\rfloor}},$$
settling a conjecture of Katona, and Lu and Milans. We obtain this bound by establishing a connection to the theory of forbidden submatrices and then applying a higher-dimensional variant of the Marcus–Tardos theorem, proved by Klazar and Marcus. We also give a new proof of their result.
Let [n]r be the complete r-partite hypergraph with vertex classes of size n. It is an easy exercise to show that every set of more than (k−1)nr−1 edges in [n]r contains a matching of size k. We conjecture the following rainbow version of this observation: if F1,F2,. . .,Fk ⊆ [n]r are of size larger than (k−1)nr−1 then there exists a rainbow matching, that is, a choice of disjoint edges fi ∈ Fi. We prove this conjecture for r=2 and r=3.
We give an asymptotic formula for the minimum number of edges contained in triangles among graphs with n vertices and e edges. Our main tool is a generalization of Zykov's symmetrization method that can be applied to several graphs simultaneously.
This rigorous introduction to network science presents random graphs as models for real-world networks. Such networks have distinctive empirical properties and a wealth of new models have emerged to capture them. Classroom tested for over ten years, this text places recent advances in a unified framework to enable systematic study. Designed for a master's-level course, where students may only have a basic background in probability, the text covers such important preliminaries as convergence of random variables, probabilistic bounds, coupling, martingales, and branching processes. Building on this base - and motivated by many examples of real-world networks, including the Internet, collaboration networks, and the World Wide Web - it focuses on several important models for complex networks and investigates key properties, such as the connectivity of nodes. Numerous exercises allow students to develop intuition and experience in working with the models.
We investigate the number of 4-edge paths in graphs with a given number of vertices and edges, proving an asymptotically sharp upper bound on this number. The extremal construction is the quasi-star or the quasi-clique graph, depending on the edge density. An easy lower bound is also proved. This answer resembles the classic theorem of Ahlswede and Katona about the maximal number of 2-edge paths, and a recent theorem of Kenyon, Radin, Ren and Sadun about k-edge stars.
The area of coalgebra has emerged within theoretical computer science with a unifying claim: to be the mathematics of computational dynamics. It combines ideas from the theory of dynamical systems and from the theory of state-based computation. Although still in its infancy, it is an active area of research that generates wide interest. Written by one of the founders of the field, this book acts as the first mature and accessible introduction to coalgebra. It provides clear mathematical explanations, with many examples and exercises involving deterministic and non-deterministic automata, transition systems, streams, Markov chains and weighted automata. The theory is expressed in the language of category theory, which provides the right abstraction to make the similarity and duality between algebra and coalgebra explicit, and which the reader is introduced to in a hands-on manner. The book will be useful to mathematicians and (theoretical) computer scientists and will also be of interest to mathematical physicists, biologists and economists.
In this first chapter, we give an introduction to random graphs and complex networks. We discuss examples of real-world networks and their empirical properties, and give a brief introduction to the kinds of models that we investigate in the book. Further, we introduce the key elements of the notation used throughout the book.
Motivation
The advent of the computer age has incited an increasing interest in the fundamental properties of real-world networks. Due to the increased computational power, large data sets can now easily be stored and investigated, and this has had a profound impact on the empirical studies of large networks. As we explain in detail in this chapter, many real-world networks are small worlds and have large fluctuations in their degrees. These realizations have had fundamental implications for scientific research on networks. Network research is aimed to both to understand why many networks share these fascinating features, and also to investigate what the properties of these networks are in terms of the spread of diseases, routing information and ranking of the vertices present.
The study of complex networks plays an increasingly important role in science. Examples of such networks are electrical power grids and telecommunication networks, social relations, the World-Wide Web and Internet, collaboration and citation networks of scientists, etc. The structure of such networks affects their performance. For instance, the topology of social networks affects the spread of information or disease (see, e.g., Strogatz (2001)). The rapid evolution and success of the Internet have spurred fundamental research on the topology of networks. See Barabási (2002) and Watts (2003) for expository accounts of the discovery of network properties by Barabási, Watts and co-authors. In Newman et al. (2006), you can find some of the original papers detailing the empirical findings of real-world networks and the network models invented for them. The introductory book by Newman (2010) lists many of the empirical properties of, and scientific methods for, networks.
One common feature of complex networks is that they are large. As a result, a global description is utterly impossible, and researchers, both in the applications and in mathematics, have turned to their local description: how many vertices they have, by which local rules vertices connect to one another, etc. These local rules are probabilistic, reflecting the fact that there is a large amount of variability in how connections can be formed