To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This survey looks at some recent applications of relative entropy in additive combinatorics. Specifically, we examine to what extent entropy-increment arguments can replace or even outperform more traditional energy-increment strategies or alternative approximation arguments based on the Hahn-Banach theorem.
Introduction
Entropy has a long history as a tool in combinatorics. Starting with a well-known estimate for the sum of the first few binomial coefficients, some of the classical applications include Spencer's theorem that six standard deviations suffice, which states that given n finite sets, there exists a two-colouring of the elements such that all sets have discrepancy at most; a proof of the Loomis-Whitney inequality, which gives an upper bound on the volume of an n-dimensional body in Euclidean space in terms of its (n - 1)-dimensional projections; or Radhakrishnans proof [33] of Bregman's theorem on the maximum permanent of a 0/1 matrix with given row sums. For a beautiful introduction to these fascinating applications, as well as an extensive annotated bibliography, see [10].
There are other more recent results in additive combinatorics in particular where the concept of entropy has played a crucial role. Notable examples include Fox's improvement [7] of the bounds in the graph removal lemma (see also [30], which appeared in the proof-reading stages of this article); Szegedy's information-theoretic approach [41] to Sidorenko's conjecture (see also the blog post [14] by Gowers); Tao's solution [45] to the Erds discrepancy problem (see the discussion [44] on Tao's blog).
Since the above developments appear to be well captured by discussions online, we shall not cover them in any detail here. Instead we shall focus on a particular strand of recent results in additive combinatorics that could all be described as “approximation theorems” of a certain kind.
The text naturally splits into five parts. To start with we give a very brief introduction to the concept of entropy and its variants, in particular relative entropy (also known as Kullback-Leibler divergence). In Section 3, we state and prove a rather general sparse approximation theorem due to Lee [28].
We give a minimum degree condition sufficient to ensure the existence of a fractional Kr-decomposition in a balanced r-partite graph (subject to some further simple necessary conditions). This generalizes the non-partite problem studied recently by Barber, Lo, Kühn, Osthus and the author, and the 3-partite fractional K3-decomposition problem studied recently by Bowditch and Dukes. Combining our result with recent work by Barber, Kühn, Lo, Osthus and Taylor, this gives a minimum degree condition sufficient to ensure the existence of a (non-fractional) Kr-decomposition in a balanced r-partite graph (subject to the same simple necessary conditions).
For an orientation H with n vertices, let T(H) denote the maximum possible number of labelled copies of H in an n-vertex tournament. It is easily seen that T(H) ≥ n!/2e(H), as the latter is the expected number of such copies in a random tournament. For n odd, let R(H) denote the maximum possible number of labelled copies of H in an n-vertex regular tournament. In fact, Adler, Alon and Ross proved that for H=Cn, the directed Hamilton cycle, T(Cn) ≥ (e−o(1))n!/2n, and it was observed by Alon that already R(Cn) ≥ (e−o(1))n!/2n. Similar results hold for the directed Hamilton path Pn. In other words, for the Hamilton path and cycle, the lower bound derived from the expectation argument can be improved by a constant factor. In this paper we significantly extend these results, and prove that they hold for a larger family of orientations H which includes all bounded-degree Eulerian orientations and all bounded-degree balanced orientations, as well as many others. One corollary of our method is that for any fixed k, every k-regular orientation H with n vertices satisfies T(H) ≥ (ek−o(1))n!/2e(H), and in fact, for n odd, R(H) ≥ (ek−o(1))n!/2e(H).
We show that the maximum number of convex polygons in a triangulation of n points in the plane is O(1.5029n). This improves an earlier bound of O(1.6181n) established by van Kreveld, Löffler and Pach (2012), and almost matches the current best lower bound of Ω(1.5028n) due to the same authors. Given a planar straight-line graph G with n vertices, we also show how to compute efficiently the number of convex polygons in G.
We identify the asymptotic probability of a configuration model CMn(d) producing a connected graph within its critical window for connectivity that is identified by the number of vertices of degree 1 and 2, as well as the expected degree. In this window, the probability that the graph is connected converges to a non-trivial value, and the size of the complement of the giant component weakly converges to a finite random variable. Under a finite second moment condition we also derive the asymptotics of the connectivity probability conditioned on simplicity, from which follows the asymptotic number of simple connected graphs with a prescribed degree sequence.
The name of Frank Ramsey is universally known amongst combinatorial mathematicians, but our casual mental picture of him can easily be an unimpressive one – the man who almost stumbled across the theorem that now bears his name, thereby anticipating Erdős and Szekeres, who of course gave the proper proof. Such an idea of Ramsey is entirely false: he was an absolutely brilliant man, who would certainly have become even more famous had he not died so young, and who would surely, it could easily be argued, have made yet further remarkable contributions to philosophy, economics and logic – and to combinatorics.
Let A and B be disjoint sets, of size 2k, of vertices of Qn, the n-dimensional hypercube. In 1997, Bollobás and Leader proved that there must be (n − k)2k edge-disjoint paths between such A and B. They conjectured that when A is a down-set and B is an up-set, these paths may be chosen to be directed (that is, the vertices in the path form a chain). We use a novel type of compression argument to prove stronger versions of these conjectures, namely that the largest number of edge-disjoint paths between a down-set A and an up-set B is the same as the largest number of directed edge-disjoint paths between A and B. Bollobás and Leader made an analogous conjecture for vertex-disjoint paths, and we prove a strengthening of this by similar methods. We also prove similar results for all other sizes of A and B.
We establish a generalization of the Expander Mixing Lemma for arbitrary (finite) simplicial complexes. The original lemma states that concentration of the Laplace spectrum of a graph implies combinatorial expansion (which is also referred to as mixing, or pseudo-randomness). Recently, an analogue of this lemma was proved for simplicial complexes of arbitrary dimension, provided that the skeleton of the complex is complete. More precisely, it was shown that a concentrated spectrum of the simplicial Hodge Laplacian implies a similar type of pseudo-randomness as in graphs. In this paper we remove the assumption of a complete skeleton, showing that simultaneous concentration of the Laplace spectra in all dimensions implies pseudo-randomness in any complex. We discuss various applications and present some open questions.
A class of graphs is called bridge-addable if, for each graph in the class and each pair u and v of vertices in different components, the graph obtained by adding an edge joining u and v must also be in the class. The concept was introduced in 2005 by McDiarmid, Steger and Welsh, who showed that, for a random graph sampled uniformly from such a class, the probability that it is connected is at least 1/e.
We generalize this and related results to bridge-addable classes with edge-weights which have an edge-expansion property. Here, a graph is sampled with probability proportional to the product of its edge-weights. We obtain for example lower bounds for the probability of connectedness of a graph sampled uniformly from a relatively bridge-addable class of graphs, where some but not necessarily all of the possible bridges are allowed to be introduced. Furthermore, we investigate whether these bounds are tight, and in particular give detailed results about random forests in complete balanced multipartite graphs.
We consider two notions describing how one finite graph may be larger than another. Using them, we prove several theorems for such pairs that compare the number of spanning trees, the return probabilities of random walks, and the number of independent sets, among other combinatorial quantities. Our methods involve inequalities for determinants, for traces of functions of operators, and for entropy.
Erdős asked the following question: given n points in the plane in almost general position (no four collinear), how large a set can we guarantee to find that is in general position (no three collinear)? Füredi constructed a set of n points in almost general position with no more than o(n) points in general position. Cardinal, Tóth and Wood extended this result to ℝ3, finding sets of n points with no five in a plane whose subsets with no four points in a plane have size o(n), and asked the question for higher dimensions: for given n, is it still true that the largest subset in general position we can guarantee to find has size o(n)? We answer their question for all d and derive improved bounds for certain dimensions.
Given a family of r-uniform hypergraphs ${\cal F}$ (or r-graphs for brevity), the Turán number ex(n,${\cal F})$ of ${\cal F}$ is the maximum number of edges in an r-graph on n vertices that does not contain any member of ${\cal F}$. A pair {u,v} is covered in a hypergraph G if some edge of G contains {u, v}. Given an r-graph F and a positive integer p ⩾ n(F), where n(F) denotes the number of vertices in F, let HFp denote the r-graph obtained as follows. Label the vertices of F as v1,. . .,vn(F). Add new vertices vn(F)+1,. . .,vp. For each pair of vertices vi, vj not covered in F, add a set Bi,j of r − 2 new vertices and the edge {vi, vj} ∪ Bi,j, where the Bi,j are pairwise disjoint over all such pairs {i, j}. We call HFp the expanded p-clique with an embedded F. For a relatively large family of F, we show that for all sufficiently large n, ex(n,HFp) = |Tr(n, p − 1)|, where Tr(n, p − 1) is the balanced complete (p − 1)-partite r-graph on n vertices. We also establish structural stability of near-extremal graphs. Our results generalize or strengthen several earlier results and provide a class of hypergraphs for which the Turán number is exactly determined (for large n).
We prove an inequality for functions on the discrete cube {0, 1}n extending the edge-isoperimetric inequality for sets. This inequality turns out to be equivalent to the following claim about random walks on the cube: subcubes maximize ‘mean first exit time’ among all subsets of the cube of the same cardinality.
We investigate the asymptotic version of the Erdős–Ko–Rado theorem for the random k-uniform hypergraph $\mathcal{H}$k(n, p). For 2⩽k(n) ⩽ n/2, let $N=\binom{n}k$ and $D=\binom{n-k}k$. We show that with probability tending to 1 as n → ∞, the largest intersecting subhypergraph of $\mathcal{H}$ has size
This lower bound on p is asymptotically best possible for k = Θ(n). For this range of k and p, we are able to show stability as well.
A different behaviour occurs when k = o(n). In this case, the lower bound on p is almost optimal. Further, for the small interval D−1 ≪ p ⩽ (n/k)1−ϵD−1, the largest intersecting subhypergraph of $\mathcal{H}$k(n, p) has size Θ(ln(pD)ND−1), provided that $k \gg \sqrt{n \ln n}$.
Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in $\mathcal{H}$k, for essentially all values of p and k.
We introduce and study the model of simply generated non-crossing partitions, which are, roughly speaking, chosen at random according to a sequence of weights. This framework encompasses the particular case of uniform non-crossing partitions with constraints on their block sizes. Our main tool is a bijection between non-crossing partitions and plane trees, which maps such simply generated non-crossing partitions into simply generated trees so that blocks of size k are in correspondence with vertices of out-degree k. This allows us to obtain limit theorems concerning the block structure of simply generated non-crossing partitions. We apply our results in free probability by giving a simple formula relating the maximum of the support of a compactly supported probability measure on the real line in terms of its free cumulants.