To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Uncertainty in logic programming has been widely investigated in the last decades, leading to multiple extensions of the classical logic programming paradigm. However, few of these are designed as extensions of the well-established and powerful Constraint Logic Programming (CLP) scheme for CLP. In a previous work we have proposed the proximity-based qualified constraint logic programming (SQCLP) scheme as a quite expressive extension of CLP with support for qualification values and proximity relations as generalizations of uncertainty values and similarity relations, respectively. In this paper we provide a transformation technique for transforming SQCLP programs and goals into semantically equivalent CLP programs and goals, and a practical Prolog-based implementation of some particularly useful instances of the SQCLP scheme. We also illustrate, by showing some simple – and working – examples, how the prototype can be effectively used as a tool for solving problems where qualification values and proximity relations play a key role. Intended use of SQCLP includes flexible information retrieval applications.
In this paper we propose various extensions to the relational model to support similarity-based querying. We build upon the -relation model, where tuples are assigned values from an arbitrary semiring , and its associated positive relational algebra . We consider a recently proposed extension to using a monus operation on the semiring to support negative queries, and show how, surprisingly, it fails for important ‘fuzzy’ semirings. Instead, we suggest using a negation operator. We also consider the identities satisfied by the relational algebra . We show that moving from a semiring to a particular form of lattice (a De Morgan frame) yields a relational algebra that satisfies all the classical (positive) relational algebra identities. We claim that to support real-world similarity queries realistically, one must move from tuple-level annotations to attribute-level annotations. We show in detail how our De Morgan frame-based model can be extended to support attribute-level annotations and give worked examples of similarity queries in this setting.
We prove the following metric Ramsey theorem. For any connected graph G endowed with a linear order on its vertex set, there exists a graph R such that in every colouring of the t-sets of vertices of R it is possible to find a copy G* of G inside R satisfying:
• distG*(x, y) = distR(x, y) for every x, y ∈ V(G*);
• the colour of each t-set in G* depends only on the graph-distance metric induced in G by the ordered t-set.
Given a finite subset A of an abelian group G, we study the set k ∧ A of all sums of k distinct elements of A. In this paper, we prove that |k ∧ A| ≥ |A| for all k ∈ {2,. . .,|A| − 2}, unless k ∈ {2, |A| − 2} and A is a coset of an elementary 2-subgroup of G. Furthermore, we characterize those finite sets A ⊆ G for which |k ∧ A| = |A| for some k ∈ {2,. . .,|A| − 2}. This result answers a question of Diderrich. Our proof relies on an elementary property of proper edge-colourings of the complete graph.
Currently available computer-aided design tools provide strong support for the later stages of product development processes where the structure and shape of the design have been fixed. Support for earlier stages of product development, when both the structure and shape of the design are still fluid, demands conceptual design tools that support designers' ways of thinking and working, and enhance creativity, for example, by offering design alternatives, difficult or not, possible without the use of such tools. The potential of spatial grammars as a technology to support such design tools has been demonstrated through experimental research prototypes since the 1970s. In this paper, we provide a review of recent spatial grammar implementations, which were presented in the Design Computing and Cognition 2010 workshop on which this paper is based, in the light of requirements for conceptual design tools and identify future research directions in both research and design education.
This paper focuses on computer-based generative methods for layout problems in architecture and urban planning with special regard for the hierarchical structuring of layout elements. The generation of layouts takes place using evolutionary algorithms, which are used to optimize the arrangement of elements in terms of overlapping within a given boundary and the topological relations between them. In this paper, the approach is extended by a data structure that facilitates the hierarchical organization of layout elements making it possible to structure and organize larger layout problems into subsets that can be solved in parallel. An important aspect for the applicability of such a system in the design process is an appropriate means of user interaction. This depends largely on the calculation speed of the system and the variety of viable solutions. These properties are evaluated for hierarchical as well as for nonhierarchical structured layout problems.
Parallel kinematics machines (PKMs) can exhibit kinematics as well as actuation redundancy. While the meaning of kinematic redundancy has been already clarified for serial manipulators, actuation redundancy, which is only possible in PKMs, is differently classified in the literature. In this paper a consistent terminology for general redundant PKM is proposed. A kinematic model is introduced with the configuration space (c-space) as central part. The notion of kinematic redundancy is recalled for PKM. C-space, output, and input singularities are distinguished. The significance of the c-space geometry is emphasized, and it is pointed out geometrically that input singularities can be avoided by redundant actuation schemes. In order to distinguish different actuation schemes of PKM, a nonlinear control system is introduced whose dynamics evolves on c-space. The degree of actuation (DOA) is introduced as the number of independent control vector fields, and PKMs are classified as full-actuated and underactuated machines. Relating this DOA to degree of freedom allows to classify the actuation redundancy.
The natural world provides numerous cases for analogy and inspiration in engineering design. During the early stages of design, particularly during concept generation when several variants are created, biological systems can be used to inspire innovative solutions to a design problem. However, identifying and presenting the valuable knowledge from the biological domain to an engineering designer during concept generation is currently a somewhat disorganized process or requires extensive knowledge of the biological system. To circumvent the knowledge requirement problem, we developed a computational approach for discovering biological inspiration during the early stages of design that integrates with established function-based design methods. This research defines and formalizes the information identification and knowledge transfer processes that enable systematic development of biologically inspired designs. The framework that supports our computational design approach is provided along with an example of a smart flooring device to demonstrate the approach. Biologically inspired conceptual designs are presented and validated through a literature search and comparison to existing products.
A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.
In this paper, for a special class of the Stewart parallel mechanism, whose moving platform and base one are two dissimilar semi-symmetrical hexagons, the position-singularity of the mechanism for a constant-orientation is analyzed systematically. The force Jacobian matrix [J]T is constructed based on the principle of static equilibrium and the screw theory. After expanding the determinant of the simplified matrix [D], whose rank is the same as the rank of the matrix [J]T, a cubic symbolic expression that represents the 3D position-singularity locus of the mechanism for a constant-orientation is derived and graphically represented. Further research shows that the 3D position-singularity surface is extremely complicated, and the geometric characteristics of the position-singularity locus lying in a general oblique plane are very difficult to be identified. However, the position-singularity locus lying in the series of characteristic planes, where the moving platform coincides, are all quadratic curves compromised of infinite many sets of hyperbolas, four pairs of intersecting lines and a parabola. For some special orientations, the quadratic curve can degenerate into two lines or even one line, all of which are parallel to the ridgeline. Two theorems are presented and proved for the first time when the geometric characteristics of the position-singularity curves in the characteristic plane are analyzed. Moreover, the kinematic property of the position-singularity curves is obtained using the Grassmann line geometry and the screw theory. The theoretical results are demonstrated with several numeric examples.
Among the many challenges to deal with, when a robot is interacting with its environment, friction at the contact surface and/or at the joints is one of the most important to be considered. In this paper we propose a control algorithm for the tracking of position and force (unconstrained orientation case only) of a manipulator end-effector that does not require the robot model for implementation. This characteristic has the advantage of making it capable to compensate friction effects without any previous estimation. Furthermore, no velocity measurements are needed, and the unit quaternion is employed for orientation control. Experimental and simulation results are provided.
We present a multimodal spatial data access framework designed to serve the informational and computational requirements of architectural design assistance systems that are intended to provide intelligent spatial decision support and analytical capabilities. The framework focuses on multiperspective semantics, qualitative and artifactual spatial abstractions, and industrial conformance and interoperability within the context of the industry foundation classes. The framework provides qualitative and cognitively adequate representational mechanisms, and the formal interpretation of the structural form of indoor spaces that are not directly provided by conventional computer-aided design based or quantitative models of space. We illustrate the manner in which these representations directly provide the spatial abstractions that are needed to enable the implementation of intelligent analytical capabilities in design assistance tools. We introduce the framework, and also provide detailed use cases that illustrate the usability of the framework and the manner of its utilization within architectural design assistance systems.
Reflective actions in collaborative design can potentially improve design performance and results. This paper quantitatively reexamines the relationships between reflective activities and design performance during the collaborative design process in terms of reflection in action. Twenty sets of protocol data were encoded by a modified version of Valkenburg and Dorst's coding scheme. Using statistical testing, the relationship between the design performance and the number of activities plus the transitions was examined. A significant statistical correlation was found between the percentage of mature framing (setting up of a desired goal with sufficient follow-ups) and the overall performance. These quantitative results verify the qualitative findings of the previous study.