To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The extraction of contour information from subjects is essential for purposes of grasping and manipulation. We proposed that human haptic exploration of contours, in the absence of vision, would reveal specialized patterns, or “contour exploration procedures,” that are directly related to task goals and intrinsic system capacities. Our general assumptions, method, and initial results were described in Part 1. Part 2 provides an analysis of the relation between contour extraction procedures and processing constraints. These theoretical assumptions are supported by empirical findings, and implications are discussed for issues of importance to robotic exploration and manipulation.
The minimum-time motion of robot manipulators is solved by defining a suitable time history for the arm end-effector to traverse. As the planning is performed in the configuration space, the uniqueness of the proposed algorithm emerges from the combination of both cubic and quadratic polynomial splines. Furthermore, the highly efficient time optimisation procedure could be applied to local segments of each joint trajectory, leading to a significant reduction of the travelling time. In addition, the ability to perform a search in the work space is granted, exploiting all possible options for an optimum motion. The method proposed considers all realistic physical limitations inherent in the manipulator design, in addition to any geometric constraints imposed on the path. Simulation programs have been written, and results are reported for the Unimation PUMA 560 robot manipulator.
Twelve equations are presented for describing how robots move through their environments receiving information and producing required results. There is a total of 16 variables, and the sets of independent and dependent variable for the system of equations are presented. Graphs and example uses are also presented.
The purpose of this paper is to describe a system which utilizes an interactive robotic device to help in the educational process of very young disabled children. Within the System the child's performance is monitored and evaluated on line, providing a current prescription for progress to more or less advanced learning levels. The robotic Systems developed at Purdue University during research on this concept are described as well as the prototype Systems to monitor progress of the students
This paper discusses the problem of impact with robotic systems. The original method for the solution of impact is presented. The main idea is the replacement of impact with a singularity and hence the approach is called the IVSA (Impact-Via-Singularity-Analysis) Method. This goal is achieved by considering the obstacle as a unilateral constraint and introducing the new set of generalized coordinates so as to incorporate the constraint in the dynamic model. Using the IVSA Method the impact is not described by algebraic equations but by a reduced set of differential equations resulting directly from the initial dynamic model. The integration of dynamic equations over the impact points is thus possible. A numerical example is presented.