To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A curvilinear robot constructed from a number of modular flexible sections of fixed length and diameter but independently controlled radius and direction of curvature has been equipped with an optical fibre image guide transmitting images from between the gripper jaws to the remote TV camera of Microvision-100, a microcomputer controlled real-time DMA-based vision System that is easily trained to recognise the shape, position and orientation of components. The gripper position and orientation is controlled by feedback from the vision System, the action taken depending on component recognition and inspection for defects. Redundant degrees of freedom enable the curvilinear robot to avoid obstacles and work in confined spaces.
This paper presents a novel approach to designing and manufacturing of a universal gripper to be used with industrial robots in flexible assembly systems. Important issues that impact greatly on the efficiency of the gripper are also discussed in this paper. Such issues include the degree of compliance allowed by the robotic wrist and the way these grippers are actuated. The gripper has been proven to be extremely flexible and low in cost.
A collision-free trajectory control for multiple robots is proposed. The proposed method is based on the concept of neural optimization network. The positions or configurations of robots are taken as the variables of the neural circuit, and the energy of network is determined by combining various functions, in which one function is to make each robot approach to its goal and another helps each robot from colliding with other robots or obstacles. Also a differential equation of the circuit which tends to minimize the energy is derived. A new method for describing collision between articulated arms is presented and some heuristic method to improve the feasibility and the safety of the trajectory is proposed. Also illustrative simulation results for mobile robots and articulated robot arms are presented.
This paper presents a new method to generate a smooth collision-free path of a mobile robot. The path is generated as follows: First, the obstacle spaces are artificially contracted to obtain an initial collision-free path which leads the mobile robot from the start point to the goal; then the path is iteratively modified to avoid the obstacle spaces which are gradually restored (this is carried out in consideration of the index introduced to evaluate the correctness of the path), in the final step, all the obstacle spaces are fully restored and the obtained path becomes a desirable collision-free one. The proposed method is effectively applied to an example of planning planar movements of a mobile robot.
This paper describes the structure of the program package for manipulator modeling, control law synthesis and simulation SYM. While the underlying algorithms have been explained elsewhere, this paper puts emphasis on SYM as a program environment with both research and educational purposes. The control law synthesis in symbolic form, as well as system simulation, are given in more details since those features have been introduced into SYM recently. As an illustration we present few instances of SYM outputs which depict main steps in manipulator control system creation process: manipulator structure as a 3D scheme, control law definition form and system simulation results as 2D plots.
Programming and control of industrial robots in a flexible manufacturing environment is a problem of increasing complexity. The paper deals with a software system, which is as much as possible independent of the real robot and suitable for different microprocessor configurations. It contains, furthermore, some components for off-line programming.
To perform dextrous manipulation efficiently, it is necessary to coordinate the interactions of many component processes. This paper investigates one approach to coordination: discrete-event systems. The applicability of discrete-event systems to the modeling of dextrous manipulation tasks is studied. Discrete-event control theory offers formal methods for determining whether a coordinator of the components can be generated. A representative dextrous manipulation task, the planar Grasp-Lift-Replace task of Howe and Cutkosky, is presented as a discrete-event process. The task is extended to include two-fingered exploratory procedures. The effectiveness of the discrete-event system approach is illustrated through simulations of several test cases.
Minimum distance algorithms allow users of robot simulation programs to maneuver manipulation arms around and between workspace obstacles. Additionally, they can be used to generate configuration maps for path planning of the manipulator “point” through a more abstract configuration space. This paper summarizes an algorithm for determining minimum distances between two polyhedral elements. Examples of configuration space maps and Cartesian stepping techniques demonstrate algorithmic utility for robot path planning. A number of accelerating strategies which depend on a heirarchical spatial representation of manipulator and workspace elements maintain reasonable CPU times for the simulation user.
A computational technique for designing a physically realizable robust dynamic gait for a planar biped robot is developed. Firstly, a feasible set of gaits was constructed to satisfy the periodicity of the biped locomotion. Then the concept of dynamic, stability margin is introduced based on the robustness of a gait with respect to the external disturbances. Using that margin, we can assess the robustness of each dynamic gait in the feasible set. It is found that the parameter, called foot strike time margin, representing the readiness of the foot strike has a close positive correlation with the dynamic stability margin. We obtain a robust gait with respect to the external disturbance by maximizing the foot strike time margin. The robustness of the optimal gait is confirmed by the behavior of the gait after application of linear impulse as well as by the examination of the largest eigenvalue at the perturbed state.
When fitting contacts to connectors, the flexibility of the wires and the irregularity of the contact shapes have proved to be the greatest obstacles in developing automation. Within the framework of the present project, two methods for fitting irregular and flexible parts have been developed, both using industrial robots supported by vibrating tools. For theoretical analysis the irregular, flexible part is mathematically idealized. The tests are carried out with these idealized parts and crimp contacts. These tests proved that the vibration method is suitable for fitting irregular, flexible parts.