To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The technical, managerial, organisational, economic and labour factors found to be important in an empirical study of more than forty firms adopting or considering robots, are outlined. Specific problems, arising from the requirements for managing integrated mechanical, electronic and computational systems, and the novel choreographic approach to production embodied in robots, are posed by the introduction of this new technology. For their effective solution, these problems demand an increased level of competence and expertise, at all levels from the managerial to the technical. But robots are just one part of modern automation, and in the future programmable automation – the integration of computer technology, robotics and conventional automation – will increasingly become the competitive standard in manufacturing industry. The introduction of such new technological standards, though forced by competitive pressures, will, however, require extensive institutional, organisational, and disciplinary adaptation if their full potential is to be realised and the UK is to remain one of the leading industrial nations.
In this paper, a very inexpensive, lightweight and simple wrist mechanism is introduced. This wrist displays nonlinear torsional vibrations. This differs from conventional wrists in that structural flexibility in the mechanism is allowed to occur by design. In this paper, the dynamic equations of this wrist are derived. System identification techniques are then employed to obtain a linearized model. Various control strategies are studied. It is shown that the input-output feedback linearization technique is not feasible for these nonlinear dynamic equations. It is also shown that the use of conventional rigid body PID controllers on this proto-type is inadequate. A tracking controller which compensates for the flexible dynamics of the wrist is implemented with encouraging results. This controller allows the end-effector to be placed at an arbitrary orientation with little vibration. The effect of the controller is to make the wrist appear to have a much higher structural stiffness. The compliant nature of this wrist allows simple force control strategies to be implemented. It is the combination of the wrist with the control algorithm which makes this design viable.
This paper discusses context-free rewriting systems inwhich there exist two disjoint finite sets of rules, and a symbol, referred to as a condition of applicability, is attached to each rule in either of these two sets. In one set, a rule with a symbol attached to it is applicable if the attached symbol occurs in the current rewritten string while in the other set, such a rule is applicable if the attached symbol does not occur there. The present paper demonstrates that these rewriting systems are computationally complete. From this main result, the paper derives several consequences and solves several open problems.
In this paper, control of nonlinear teleoperator systems where both the master and slave systems are kinematically redundant robot manipulators is addressed. The controller is developed under the assumption that the user and environmental input forces are unmeasurable. Lyapunov-based stability analysis is used to prove that the proposed controller yields asymptotic tracking results and ensures the coordination of the master and slave systems while satisfying a sub-task objective. Numerical simulation results are presented to illustrate the effectiveness of the proposed controller.
This paper describes a numerical algorithm to solve the inverse kinematics of parallel robots based on numerical integration. Inverse kinematics algorithms based on numerical integration involve the drift phenomena of the solution; as a consequence, errors are generated when the end-effector location differs from that desired. The proposed algorithm associates a novel method to describe the differential kinematics with a simple numerical integration method. The methodology is presented in this paper and its exponential stability is proved. A numerical example and a real application are presented to outline its advantages.
In this paper, we survey the rich theory of infinite episturmian words which generalize to any finite alphabet, in a rather resembling way, the well-known family of Sturmian words on two letters. After recalling definitions and basic properties, we consider episturmian morphisms that allow for a deeper study of these words. Some properties of factors are described, including factor complexity, palindromes, fractional powers, frequencies, and return words. We also consider lexicographical properties of episturmian words, as well as their connection to the balance property, and related notions such as finite episturmian words, Arnoux-Rauzy sequences, and “episkew words” that generalize the skew words of Morse and Hedlund.
The algebraic study of formal languages shows that ω-rational sets correspond precisely to the ω-languages recognizable by finite ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height ωω.
We prove that every Sturmian word ω has infinitely many prefixes ofthe form UnVn3, where |Un| < 2.855|Vn| andlimn→∞|Vn| = ∞. In passing, we give a very simple proof of theknown fact that every Sturmian word begins in arbitrarily long squares.
We investigated and identified the conditions necessary for stable dynamic gait generation in biped robots from the mechanical energy balance point of view. The equilibrium point at impact in a dynamic gait is uniquely determined by two conditions; keeping the restored mechanical energy constant and settling the relative hip-joint angle to the desired value before impact. The generated gait then becomes asymptotically stable around the equilibrium point determined by these conditions. This is shown by a simple recurrence formula of the kinetic energy immediately before impact. We verified this stability theorem using numerical simulation of virtual passive dynamic walking. The results were compared with those for a rimless wheel and an inherent stability principle was derived. Finally, we derived a robust control law using a reference mechanical energy trajectory and demonstrated its effectiveness numerically.
We continue our study of the negation-free structure of multiplicative linear logic, as represented by the structure of weakly distributive categories, to consider the ‘exponentials’! and ? in the weakly distributive context. In addition to the usual triple and cotriple structure that one would expect on each of the two operators, there must be some connection between them to replace the de Morgan relationship found in the linear logic context. This turns out to be the notion of tensorial strength. We analyze coherence for this situation, using a modification of the usual nets due to Danos, which is a form suitable for linear logic with exponentials but without negation.