To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When computer vision technique is used in robotics, robotic hand–eye calibration is a very important research task. Many algorithms have been proposed for hand–eye calibration. Based on these algorithms, we introduce a new hand–eye calibration algorithm in this paper, which employs the screw motion theory to establish a hand–eye matrix equation by using quaternion and gets a simultaneous result for rotation and translation by solving linear equations. The algorithm proposed in this paper has high accuracy and stable computational efficiency and can be understood easily. Both simulations and real experiments show the superiority of our algorithm over the comparative algorithms.
For two graphs S and T, the constrained Ramsey number f(S, T) is the minimum n such that every edge colouring of the complete graph on n vertices (with any number of colours) has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T. Here, a subgraph is said to be rainbow if all of its edges have different colours. It is an immediate consequence of the Erdős–Rado Canonical Ramsey Theorem that f(S, T) exists if and only if S is a star or T is acyclic. Much work has been done to determine the rate of growth of f(S, T) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang and Ling showed that f(S, T) ≤ O(st2) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this paper, we study this case and show that f(S, Pt) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.
One approach to give semantics to languages with subtypes is by translation to target languages without subtyping: subtypings A ≤ B are interpreted via conversion functions A → B. This paper shows how to extend the method to languages with computational effects, using Moggi's computational metalanguage.
Regular-expression derivatives are an old, but elegant, technique for compiling regular expressions to deterministic finite-state machines. It easily supports extending the regular-expression operators with boolean operations, such as intersection and complement. Unfortunately, this technique has been lost in the sands of time and few computer scientists are aware of it. In this paper, we reexamine regular-expression derivatives and report on our experiences in the context of two different functional-language implementations. The basic implementation is simple and we show how to extend it to handle large character sets (e.g., Unicode). We also show that the derivatives approach leads to smaller state machines than the traditional algorithm given by McNaughton and Yamada.
This paper is concerned with PID control of rigid robots equipped with brushless DC (BLDC) motors when the electric dynamics of these actuators is taken into account. We show that an adaptive PID controller yields global stability and global convergence to the desired link positions. Moreover, we also show that virtually the PID part of the controller suffices to achieve the reported global results. We present a theoretical justification for the torque control strategy, commonly used in practice to control BLDC motors. Our controller does not require the exact knowledge of neither robot nor actuator parameters.
An efficient, simple, and practical real time path planning method for multiple mobile robots in dynamic environments is introduced. Harmonic potential functions are utilized along with the panel method known in fluid mechanics. First, a complement to the traditional panel method is introduced to generate a more effective harmonic potential field for obstacle avoidance in dynamically changing environments. Second, a group of mobile robots working in an environment containing stationary and moving obstacles is considered. Each robot is assigned to move from its current position to a goal position. The group is not forced to maintain a formation during the motion. Every robot considers the other robots of the group as moving obstacles and hence the physical dimensions of the robots are also taken into account. The path of each robot is planned based on the changing position of the other robots and the position of stationary and moving obstacles. Finally, the effectiveness of the scheme is shown by modeling an arbitrary number of mobile robots and the theory is validated by several computer simulations and hardware experiments.
This special issue is devoted to papers from the meeting on Combinatorics, Probability and Computing, held at the Mathematisches Forschungsinstitut in Oberwolfach from 29 October 2006 to 4 November 2006. Like most conferences at Oberwolfach, this was an exciting and stimulating occasion; we were treated to numerous excellent talks, many of which provoked a great deal of interest and discussion among the participants.
Modelling is one of the most frequent tasks in the area of information systems (ISs), with models such as schemata, ontologies, patterns and architectures forming the bases for their creation. Very often, however, the difference between these types of models is not clear and causes confusion and erratic use of the terms. The aim of this paper is to clarify the concept of model through a study of some of the more common ones used in ISs. This proposal is presented through an ontology, where we show how we conceptualize models according to their role in the development of an IS: the model understood as the representation of a domain or as a reality serving as an example.
In this paper, the inverse dynamics of the 6-dof out-parallel manipulator is formulated by means of the principle of virtual work and the concept of link Jacobian matrices. The dynamical equations of motion include the rotation inertia of motor–coupler–screw and the term caused by the external force and moment exerted at the moving platform. The approach described here leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure. Numerical simulation for the inverse dynamics of a 6-dof out-parallel manipulator is illustrated. The whole actuating torques and the torques caused by gravity, velocity, acceleration, moving platform, strut, carriage, and the rotation inertia of the lead screw, motor rotor and coupler have been computed.
Large disturbances can cause a biped to fall. If an upcoming fall can be detected, damage can be minimized or the fall can be prevented. We introduce the multi-way principal component analysis (MPCA) method for the detection of upcoming falls. We study the detection capability of the MPCA method in a simulation study with the simplest walking model. The results of this study show that the MPCA method is able to predict a fall up to four steps in advance in the case of single disturbances. In the case of random disturbances the MPCA method has a successful detection probability of up to 90%.
This issue of the Journal of Functional Programming (JFP) marks a point of transition. After serving since 1991 as Editor, then since 2004 as co-Editor in Chief (along with Greg Morrisett from 2004 to 2006 and Xavier Leroy since 2007), Paul Hudak is stepping down.
In this paper, we propose a decentralized robust control algorithm for modular and reconfigurable robots (MRRs) based on Lyapunov's stability analysis and backstepping techniques. In using decentralized control schemes with robot manipulators, each joint is considered as an independent subsystem, and the dynamical effects from the other links and joints are treated as disturbance. However, there exist many uncertainties due to unmodeled dynamics, varying payloads, harmonic drive (HD) compliance, HD complex gear meshing mechanisms, etc. Also, while the reconfigurability of MRRs is advantageous, modifying the configuration will result in changes to the robot dynamics parameters, thereby making it challenging to tune the control system. All of the above mentioned disturbances in addition to reconfigurability present a challenge in controlling MRRs. The proposed controller is well suited for MRR applications because of its simple structure that does not require the exact knowledge of the dynamic parameters of the configurations. Desired tracking performance can be achieved via tuning a limited set of parameters of the robust controller. If the numbers of degrees of freedom are held constant, these parameters are shown to be relatively independent of the configuration, and can be held constant between changes in configuration. This strategy is novel compared to existing MRR control methods. In order to validate the controller performance, experimental setup and results are also presented.
This paper presents an architecture for the navigation of an autonomous mobile robot evolving in environments with obstacles. Instead of addressing the motion planning and control problems in different contexts, these issues are described in connected modules with performance requirement considerations. The path planning problem is formulated as a constrained receding horizon planning problem and is solved in real time with an efficient computational method that combines non-linear control theory, B-spline basis function and non-linear programming. An integral sliding mode controller is used for trajectory tracking. The closed-loop stability of the tracking errors is guaranteed in spite of unknown disturbances. It is also shown that this strategy is particularly useful if integral sliding mode control is combined with other methods to further robustify against perturbations. The effectiveness, perfect performance of obstacle avoidance, real time and high robustness properties are demonstrated by experimental results.
This essay proposes a procedural interpretation of negative information in terms of split negation as procedural prohibition. Information frames and models are introduced, with negation defined as the implication of bottom, 0. A method for extracting the procedures prohibited by complex formulas is outlined, and the relationship between types of prohibited procedures is identified. Definitions of negation types in terms of the implication of 0 on an informational interpretation have been criticized. This criticism turns on the definitions creating a purportedly unnatural asymmetry between positive and negative information. It is demonstrated below that a strong asymmetry between positive and negative information is in fact the case. As such, an asymmetry between positive and negative information is natural, and something that we should want an informational interpretation of negation to preserve.
At the beginning of Die Grundlagen der Arithmetik (§2) [1884], Frege observes that “it is in the nature of mathematics to prefer proof, where proof is possible”. This, of course, is true, but thinkers differ on why it is that mathematicians prefer proof. And what of propositions for which no proof is possible? What of axioms? This talk explores various notions of self-evidence, and the role they play in various foundational systems, notably those of Frege and Zermelo. I argue that both programs are undermined at a crucial point, namely when self-evidence is supported by holistic and even pragmatic considerations.
We study relaxations of proper two-colourings, such that the order of the induced monochromatic components in one (or both) of the colour classes is bounded by a constant. A colouring of a graph G is called (C1, C2)-relaxed if every monochromatic component induced by vertices of the first (second) colour is of order at most C1 (C2, resp.). We prove that the decision problem ‘Is there a (1, C)-relaxed colouring of a given graph G of maximum degree 3?’ exhibits a hardness jump in the component order C. In other words, there exists an integer f(3) such that the decision problem is NP-hard for every 2 ≤ C < f(3), while every graph of maximum degree 3 is (1, f(3))-relaxed colourable. We also show f(3) ≤ 22 by way of a quasilinear time algorithm, which finds a (1, 22)-relaxed colouring of any graph of maximum degree 3. Both the bound on f(3) and the running time greatly improve earlier results. We also study the symmetric version, that is, when C1 = C2, of the relaxed colouring problem and make the first steps towards establishing a similar hardness jump.