To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study reviews 71 high-quality studies of massive open online courses focused on languages (LMOOCs) that were published from the inception of LMOOCs to 2021. The purpose of this study is to gain a deeper understanding of the current state of research and identify fruitful directions for future LMOOC research. First, we reviewed three basic sets of characteristics of these studies: (1) research trends – for example, publication types and years; (2) research contexts – for example, countries in which the studies were conducted, the subjects’ target languages, language-ability levels, skills, and whether the focal courses are for specific purposes; and (3) research design, including data collection, data analysis, and theoretical frameworks. We then utilized a text-mining approach called Latent Dirichlet Allocation that uses machine-learning techniques to identify research-topic commonalities underlying the collected studies. In this way, a total of nine topics were identified. They were: (1) core elements of LMOOCs; (2) interaction and communication in LMOOCs; (3) innovative LMOOC teaching practices; (4) LMOOC standards and quality assurance; (5) LMOOC implementation, participation, and completion; (6) LMOOC teaching plans; (7) LMOOC learning effectiveness and its drivers/obstacles; (8) learners and learning in LMOOCs; and (9) inclusiveness in LMOOCs. These were then diagrammed as a ThemeRiver, which showed the evolutionary trend of the nine identified topics. Specifically, scholarly interest in Topics 5, 7, and 9 increased over time, whereas for Topics 1 and 6, it decreased. Based on our results, we highlighted specific directions for future LMOOC research on each of the identified research topics.
The use of topology optimization in the design of fluid dynamics systems is still in its infancy. With the decreasing cost of additive manufacture, the application of topology optimization in the design of structural components has begun to increase. This paper provides a method for using topology optimization to reduce the power dissipation of fluid dynamics systems, with the novelty of it being the first application of stochastic mechanisms in the design of 3D fluid–solid geometrical interfaces. The optimization algorithm uses the continuous adjoint method for sensitivity analysis and is optimized against an objective function for fluid power dissipation. The paper details the methodology behind a vanilla gradient descent approach before introducing stochastic behavior through a minibatch-based system. Both algorithms are then applied to a novel case study for an internal combustion engine's piston cooling gallery before the performance of each algorithm's resulting geometry is analyzed and compared. The vanilla gradient descent algorithm achieves an 8.9% improvement in pressure loss through the case study, and this is surpassed by the stochastic descent algorithm which achieved a 9.9% improvement, however this improvement came with a large time cost. Both approaches produced similarly unintuitive geometry solutions to successfully improve the performance of the cooling gallery.
To enhance the charging and discharging strategy of the energy storage system (ESS) and optimize its economic efficiency, this paper proposes a novel approach based on the enhanced whale algorithm. Recognizing that the standard whale algorithm can sometimes suffer from local optima in high-dimensional multiobjective optimization, this study introduces chaotic mapping and individual information exchange mechanisms to address this challenge. The proposed algorithm explores optimal configurations for different energy device placements and capacities through encircling and bubble searches, evaluating various multiobjective functions for optimization. In addition, the algorithm refines both the system operation model and the ESS configuration model, with the objective function being the analysis of the average annual revenue of the ESS. Model testing results demonstrate that this algorithm yields more moderate energy storage (ES) capacity decay, extending operational time to 3,124 days and achieving a full-life cycle benefit of the ESS as high as 1,821,623.68 yuan. Also, our algorithm demonstrates high efficiency, with minimal test time (68.36 seconds) and quick optimization (0.031 seconds per cycle), regardless of problem complexity.
In order to optimize the performance of the transmission network (TN), this paper introduces the random fractal search algorithm based on the beetle antenna search algorithm, thus proposing the random fractal beetle antenna algorithm (SFBA). The main work of this research is as follows: (1) in the beetle antenna search algorithm, this study used a population of beetles and introduced elite members of the population in order to make the algorithm more stable and to some extent improve the accuracy of its answers. (2) Utilizing the elite reverse learning method and the leader’s multilearning strategy for elites helps to strike a balance between the global exploration and local development of the algorithm. This strategy also further improves the ability of the algorithm to find the optimal solution. (3) Experiments on real experimental data show that the SFBA algorithm proposed in this paper is effective in improving TN performance. In summary, the research content of this paper provides a good reference value for the performance optimization of TN in actual production.