To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article explores the accessibility of acousmatic compositional approaches to sound and installation art. Principally of concern is the consideration of intimacy to create a means of ‘connecting’ with an audience. Installations might be said to explore ideas of intimacy in two ways which increase accessibility for the installation visitor: through cultivating installation–visitor relationships, and through encouraging visitor–visitor relationships. A variety of ways in which various acousmatic compositional techniques relating to intimacy might be brought to bear on and operate as a way of drawing a listener into a work are explored, in particular as they relate to the consideration of space and spatial relationships. These include recording techniques, types of sound materials chosen, and the creation of particular spatial environments and listening conditions. Along with a number of instances of sound art provided by way of examples, my ongoing GRIDs series of sound sculptures will provide a case study of works related to an acousmatic aesthetic where these concerns find an outlet.
In this article, I consider implications of outreach practices in the field of contemporary music for the field itself and for the professional artists involved. I am interested in what happens if we facilitate access to contemporary music for audiences of any kind of demographic, break down barriers, share authority between participating non-professionals and professional artists and allow all participants of a project influence on jointly created artworks. I investigate in how far the organisational or structural change in the creative practice and the creative outcome – that comes along with bringing new players into the field – has consequences on the personal practice of the professional actors in such a project. I base my article on theories of sociologist Pierre Bourdieu, communication scholar Henry Jenkins, art historian Claire Bishop, musicologist Elena Ungeheuer and my own research into social structures of the contemporary art field, and apply them to a single case study: the artistic research project TransCoding – From ‘Highbrow Art’ to Participatory Culture, funded by the Austrian Science Fund. Using the method of thick description, I take the reader through the history of TransCoding, give account of field experiences and put the found patterns of cultural-social experiences into a theoretical context. I investigate the power shifts from professional artists to audience that occurred on the basis of creative, participatory processes within this project. In doing so, I would like to raise questions and stimulate discussion with regard to the conditions and social organisations of creative practice in the contemporary music field, the distribution of power and how this is felt when ‘bringing new audiences to new music’ into the core practice of professional artists, the actual creation of a new work.
Sketching is a natural and intuitive communication tool used for expressing concepts or ideas which are difficult to communicate through text or speech alone. Sketching is therefore used for a variety of purposes, from the expression of ideas on two-dimensional (2D) physical media, to object creation, manipulation, or deformation in three-dimensional (3D) immersive environments. This variety in sketching activities brings about a range of technologies which, while having similar scope, namely that of recording and interpreting the sketch gesture to effect some interaction, adopt different interpretation approaches according to the environment in which the sketch is drawn. In fields such as product design, sketches are drawn at various stages of the design process, and therefore, designers would benefit from sketch interpretation technologies which support these differing interactions. However, research typically focuses on one aspect of sketch interpretation and modeling such that literature on available technologies is fragmented and dispersed. In this paper, we bring together the relevant literature describing technologies which can support the product design industry, namely technologies which support the interpretation of sketches drawn on 2D media, sketch-based search interactions, as well as sketch gestures drawn in 3D media. This paper, therefore, gives a holistic view of the algorithmic support that can be provided in the design process. In so doing, we highlight the research gaps and future research directions required to provide full sketch-based interaction support.
It is well documented that intergenerational ties play important roles in adults’ well-being. However, most studies focus on the impact of individuals’ own perceptions of their ties without considering whether family members’ assessments of these ties affect well-being. We address this question using data from 296 adult children nested within 95 later-life families in which all offspring were interviewed. Applying a mixed-method within-family approach, we explored whether the effect of perceived maternal favoritism on depressive symptoms was increased when siblings shared ego’s perceptions. Multilevel regression analyses revealed that ego’s own perceptions predicted depressive symptoms, but only among daughters. Siblings’ perceptions that egos were most close to mothers did not affect the well-being of daughters or sons. Qualitative analyses suggested that differential effects of perceived favoritism by gender reflected differences in the meaning sons and daughters associated with being favored children. Favored daughters were more likely than favored sons to report that they were emotional caregivers to their mothers; this pattern was especially strong when siblings reinforced egos’ perceptions of being “best suited” for this role. These findings emphasize the salience of egos’ own perceptions, relative to those of family network members, in shaping role embracement and psychological well-being, especially among women.
In an increasingly competitive economic environment, innovation has become an invaluable asset to the organization and for effective knowledge management (KM). Nowadays, organizations are knowledge based and their success and survival depend on creativity, diversity, and innovation. A knowledge map is a vital tool for better KM and innovation. To this effect, the innovation processes on KMin education system through knowledge transfer activities will facilitate the shift from teaching as knowledge transmission to teaching as learning facilitation. In this context, we present a new approach based on, the one hand, the critical knowledge mapping being based on an extraction work of the expert knowledge and on the other hand, the description of the conceptual framework design which allows one to exploit and integrate knowledge capitalized and external knowledge by the open innovation process. In addition, this practice makes it possible to examine how KM, in particular, the knowledge mapping, can be used to establish the flow of the internal and external information in order to increase the efficiency of creativity and invention.
The personalization of products and services has become an inevitable trend in the manufacturing and service industry, but it is very difficult to identify users' personalized requirements accurately. This paper solves this problem by constructing an identifying model for personalized requirement based on user profiling. Firstly, the framework of the proposed model and the process of identifying the user's personalized requirements with this model are introduced, and then an experimental scheme for obtaining users' profiling data is designed. On this basis, an experiment is performed by investigating users' requirements for the computer to obtain the data, and the data are used for the analysis based on the proposed model. The analysis result shows that the model can reveal the difference among heterogeneous users well, find out the implicit requirements of users, and identify the gap between existing products and users' personalized requirements, which provides support to the subsequent improvement of product design.
Conventional tests with written information used for the evaluation of sign language (SL) comprehension introduce distortions due to the translation process. This fact affects the results and conclusions drawn and, for that reason, it is necessary to design and implement the same language interpreter-independent evaluation tools. Novel web technologies facilitate the design of web interfaces that support online, multiple-choice questionnaires, while exploiting the storage of tracking data as a source of information about user interaction. This paper proposes an online, multiple-choice sign language questionnaire based on an intuitive methodology. It helps users to complete tests and automatically generates accurate, statistical results using the information and data obtained in the process. The proposed system presents SL videos and enables user interaction, fulfilling the requirements that SL interpretation is not able to cover. The questionnaire feeds a remote database with the user answers and powers the automatic creation of data for analytics. Several metrics, including time elapsed, are used to assess the usability of the SL questionnaire, defining the goals of the predictive models. These predictions are based on machine learning models, with the demographic data of the user as features for estimating the usability of the system. This questionnaire reduces costs and time in terms of interpreter dedication, as well as widening the amount of data collected while employing user native language. The validity of this tool was demonstrated in two different use cases.
The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all k ≥ r + 3 by Füredi, Kostochka and Luo and for k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper we settle the remaining cases: k = r + 1 and k = r + 2, proving a conjecture of Füredi, Kostochka and Luo.
Accessibility in immersive media is a relevant research topic, still in its infancy. This article explores the appropriateness of two rendering modes (fixed-positioned and always-visible) and two guiding methods (arrows and auto-positioning) for subtitles in 360° video. All considered conditions have been implemented and integrated in an end-to-end platform (from production to consumption) for their validation and evaluation. A pilot study with end users has been conducted with the goals of determining the preferred options by users, the options that result in a higher presence, and of gathering extra valuable feedback from the end users. The obtained results reflect that, for the considered 360° content types, always-visible subtitles were more preferred by end users and received better results in the presence questionnaire than the fixed-positioned subtitles. Regarding guiding methods, participants preferred arrows over auto-positioning because arrows were considered more intuitive and easier to follow and reported better results in the presence questionnaire.
We consider Hilbert-style non–well-founded derivations in the Gödel-Löb provability logic GL and establish that GL with the obtained derivability relation is globally complete for algebraic and neighbourhood semantics.
An equitable colouring of a graph G is a vertex colouring where no two adjacent vertices are coloured the same and, additionally, the colour class sizes differ by at most 1. The equitable chromatic number χ=(G) is the minimum number of colours required for this. We study the equitable chromatic number of the dense random graph ${\mathcal{G}(n,m)}$ where $m = \left\lfloor {p\left( \matrix{n \cr 2 \cr}\right)} \right\rfloor $ and 0 < p < 0.86 is constant. It is a well-known question of Bollobás [3] whether for p = 1/2 there is a function f(n) → ∞ such that, for any sequence of intervals of length f(n), the normal chromatic number of ${\mathcal{G}(n,m)}$ lies outside the intervals with probability at least 1/2 if n is large enough. Bollobás proposes that this is likely to hold for f(n) = log n. We show that for the equitable chromatic number, the answer to the analogous question is negative. In fact, there is a subsequence ${({n_j})_j}_{ \in {\mathbb {N}}}$ of the integers where $\chi_=({\mathcal{G}(n_j,m_j)})$ is concentrated on exactly one explicitly known value. This constitutes surprisingly narrow concentration since in this range the equitable chromatic number, like the normal chromatic number, is rather large in absolute value, namely asymptotically equal to n/(2logbn) where b = 1/(1 − p).
We prove that n plane algebraic curves determine O(n(k+2)/(k+1)) points of kth order tangency. This generalizes an earlier result of Ellenberg, Solymosi and Zahl on the number of (first order) tangencies determined by n plane algebraic curves.
This paper focuses on robust control of a simplest passive model, which is established on a DCLF (discrete control Lyapunov function) -based control system, and presents gait transition method based on the study of purely passive walker. Firstly, the DCLF is introduced to stabilize walking process between steps exponentially by modulating the length of next step. Next, the swing leg trajectory from mid-stance position to foot-strike can be planned. Then the control law is calculated to resist external disturbance. Besides, an impulse is added just before foot-strike to realize a periodic walking pattern on flat or uphill ground. With walking terrain varying, the robot can transit to an adaptive walking gait in a few steps. With different push or pull disturbances acting on hip joint and the robot gait transiting on a continuously slope-changing downhill, the effectiveness of the presented DCLF-based method is verified using simulation experiments. The ability to walk on a changing environment is also presented by simulation results. The insights of this paper can help to develop a robust control method and adaptive walking of dynamic passive locomotion robots.
This paper proposes an adaptive robust impedance control for a single-link flexible arm when it encounters an environment at an unknown intermediate point. First, the intermediate collision point is estimated using a collision detection algorithm. The controller, then, switches from free to constrained motion mode. In the unconstrained motion mode, the exerted force to environment is nearly zero. Thus, the reference trajectory is a prescribed desired trajectory in position control. In the constrained motion mode, the reference trajectory is determined by the desired target dynamic impedance. The simulation results demonstrate the efficiency of proposed control scheme.
This paper describes a modeling approach to compute the lumped parameter hydrodynamic derivative matrices of an underwater multi-hull vehicle. The vehicle, modeled as a multi-body underwater system and denoted as cluster, can be composed by heterogeneous bodies with known dynamic parameters, rigidly connected. The nonlinear dynamic equations of the cluster and its parameters are derived by means of a modular approach, based on the composition of single basic elements. The ultimate objective is to derive a mathematical description of the multi-hull system that captures its most significant dynamics allowing to design model-based motion controllers and navigation filters. The modular nature of the resulting model can be exploited, by example, when control reconfiguration is to be dealt with in the presence of (possibly multiple) failures. The numerical simulation of a hypothetical cluster is presented and discussed.
The Inverse Kinematics (IK) problem of manipulators can be divided into two distinct steps: (1) Problem formulation, where the problem is developed into a form which can then be solved using various methods. (2) Problem solution, where the IK problem is actually solved by producing the values of different joint space variables (joint angles, joint velocities or joint accelerations). The main focus of this paper is concentrated on the discussion of the IK problem of redundant manipulators, formulated as a quadratic programming optimization problem solved by different kinds of recurrent neural networks.
In this paper, we focus on the configuration design of a reconfigurable robot that merges the functions of wheels, tracks, and legs together. A deformable rim is utilized to make the robot wheel reconfigurable to change its locomotion mode. Three rules of configuration design to achieve reconfiguration between different modes are proposed: (1) in wheel mode, the track wheel set should be hidden inside the wheel rim; (2) in track/leg mode, the folded wheel rim should be hidden inside the caterpillar loop; (3) the circumference of the wheel rim in wheel mode should be equal to the length of the track ring in track mode. According to these rules, the configuration of the deformable rim, track wheel set, and telescopic spoke are analyzed and designed. A prototype of the reconfigurable wheel is fabricated by three-dimensional printing, and its functions of locomotion in different modes, the switch between different modes, and its load-bearing ability are tested, verifying the effectiveness of the configuration design. Furthermore, a prototype of the reconfigurable robot is manufactured by computerized numerical control (CNC) machining to verify the structural design of the reconfigurable wheel. Compared to traditional hybrid robots with separate wheels, tracks, and legs, this reconfigurable design lends the multimodal robot both excellent terrain adaptability and a compact structure; thus, it can be widely used as a universal mobile platform in search and rescue missions and explosive object disposal missions.
This paper presents our sketch drawing artist humanoid robot research. One of the limitations of the existing artist humanoid robot is the lack of feedback on the error that occurs during the drawing process. The contribution of this research is the development of a humanoid robot artist with drawing error correction capability. Based on our previous work with open-loop control pen-and-ink humanoid robot artist, we have implemented a closed-loop visual servoing approach to address this problem. Our experimental results show that this approach is sufficient to correct drawing errors that occur due to mechanical limitation of a robot.
The current fourth industrial revolution, or ‘Industry 4.0’ (I4.0), is driven by digital data, connectivity, and cyber systems, and it has the potential to create impressive/new business opportunities. With the arrival of I4.0, the scenario of various intelligent systems interacting reliably and securely with each other becomes a reality which technical systems need to address. One major aspect of I4.0 is to adopt a coherent approach for the semantic communication in between multiple intelligent systems, which include human and artificial (software or hardware) agents. For this purpose, ontologies can provide the solution by formalizing the smart manufacturing knowledge in an interoperable way. Hence, this paper presents the few existing ontologies for I4.0, along with the current state of the standardization effort in the factory 4.0 domain and examples of real-world scenarios for I4.0.
We assess the reliability of relational event model (REM) parameters estimated under two sampling schemes: (1) uniform sampling from the observed events and (2) case–control sampling which samples nonevents, or null dyads (“controls”), from a suitably defined risk set. We experimentally determine the variability of estimated parameters as a function of the number of sampled events and controls per event, respectively. Results suggest that REMs can be reliably fitted to networks with more than 12 million nodes connected by more than 360 million dyadic events by analyzing a sample of some tens of thousands of events and a small number of controls per event. Using the data that we collected on the Wikipedia editing network, we illustrate how network effects commonly included in empirical studies based on REMs need widely different sample sizes to be reliably estimated. For our analysis we use an open-source software which implements the two sampling schemes, allowing analysts to fit and analyze REMs to the same or other data that may be collected in different empirical settings, varying sample parameters or model specification.