To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the increasing demands for versatile robotic platforms capable of performing a variety of tasks in diverse and uncertain environments, the needs for adaptable robotic structures have been on the rise. These requirements have led to the development of modular reconfigurable robotic systems that are composed of a numerous self-sufficient modules. Each module is capable of establishing rigid connections between multiple modules to form new structures that enable new functionalities. This allows the system to adapt to unknown tasks and environments. In such structures, coupling between modules is of crucial importance to the overall functionality of the system. Over the last two decades, researchers in the field of modular reconfigurable robotics have developed novel coupling mechanisms intended to establish rigid and robust connections, while enhancing system autonomy and reconfigurability. In this paper, we review research contributions related to robotic coupling mechanism designs, with the aim of outlining current progress and identifying key challenges and opportunities that lay ahead. By presenting notable design approaches to coupling mechanisms and the most relevant efforts at addressing the challenges of sensorization, misalignment tolerance, and autonomous reconfiguration, we hope to provide a useful starting point for further research into the field of modular reconfigurable robotics and other applications of robotic coupling.
In this paper, we discuss new bounds and approximations for tail probabilities of certain discrete distributions. Several different methods are used to obtain bounds and/or approximations. Excellent upper and lower bounds are obtained for the Poisson distribution. Excellent approximations (and not bounds necessarily) are also obtained for other discrete distributions. Numerical comparisons made to previously proposed methods demonstrate that the new bounds and/or approximations compare very favorably. Some conjectures are made.
A language is said to be homogeneous when all its words have the same length. Homogeneous languages thus form a monoid under concatenation. It becomes freely commutative under the simultaneous actions of every permutation group on the collection of homogeneous languages of length n ∈ ℕ. One recovers the isothetic regions from (Haucourt 2017, to appear (online since October 2017)) by considering the alphabet of connected subsets of the space |G|, viz the geometric realization of a finite graph G. Factoring the geometric model of a conservative program amounts to parallelize it, and there exists an efficient factoring algorithm for isothetic regions. Yet, from the theoretical point of view, one wishes to go beyond the class of conservative programs, which implies relaxing the finiteness hypothesis on the graph G. Provided that the collections of n-dimensional isothetic regions over G (denoted by |G|) are co-unital distributive lattices, the prime decomposition of isothetic regions is given by an algorithm which is, unfortunately, very inefficient. Nevertheless, if the collections |G| satisfy the stronger property of being Boolean algebras, then the efficient factoring algorithm is available again. We relate the algebraic properties of the collections |G| to the geometric properties of the space |G|. On the way, the algebraic structure |G| is proven to be the universal tensor product, in the category of semilattices with zero, of n copies of the algebraic structure |G|.
Cooperative manipulators have uncertainties in their structure; therefore, an optimal sliding mode control method is derived from a combination of the sliding mode control (SMC) and the state-dependent Riccati equation (SDRE) technique. This proposed combination is applied to a class of non-linear closed-loop systems. One of the distinguished features of this control method is its robustness toward uncertainty. Due to the lack of optimality in the SMC method, in this paper, a robust and optimal method is presented by considering the SDRE in design of the sliding surface. Due to the fact that cooperative manipulators have been used for carrying loads, the percentage of load distributions between each manipulator has been derived to increase the dynamic load carrying capacity (DLCC). The proposed control structure is implemented on a Scout robot with two manipulators in cooperative mode, theoretically and practically using LabVIEW software; and the results were compared by considering the uncertainty in its structure. In comparison with the SDRE, the proposed method increased the DLCC almost 10% in the Scout case.
For a given training corpus of parallel sentences, the quality of the output produced by a translation system relies heavily on the underlying similarity measurement criteria. A phrase-based machine translation system derives its output through a generative process using a Phrase Table comprising source and target language phrases. As a consequence, the more effective the Phrase Table is, in terms of its size and the output that may be derived out of it, the better is the expected outcome of the underlying translation system. However, finding the most similar phrase(s) from a given training corpus that can help generate a good quality translation poses a serious challenge. In practice, often there are many parallel phrase entries in a Phrase Table that are either redundant, or do not contribute to the translation results effectively. Identifying these candidate entries and removing them from the Phrase Table will not only reduce the size of the Phrase Table, but should also help in improving the processing speed for generating the translations. The present paper develops a scheme based on syntactic structure and the marker hypothesis (Green 1979, The necessity of syntax markers: two experiments with artificial languages, Journal of Verbal Learning and Behavior) for reducing the size of a Phrase Table, without compromising much on the translation quality of the output, by retaining the non-redundant and meaningful parallel phrases only. The proposed scheme is complemented with an appropriate similarity measurement scheme to achieve maximum efficiency in terms of BLEU scores. Although designed for Hindi to English machine translation, the overall approach is quite general, and is expected to be easily adaptable for other language pairs as well.
PMs with two rotations and one translation (2R1T) have been used as skeletons in various advanced manufacturing equipment where high accuracy and stiffness are basic requirements. Considering the advantages of redundant actuation and overconstrained structure, such as reduced singularities and improved stiffness, a new 2R1T overconstrained PM with actuation redundancy, called Hex4, is proposed in this paper. This is a 2-PUR/2-RPU PM (where P denotes an actuated prismatic joint, U a universal joint, and R a revolute joint) that is actuated by four prismatic joints. Compared with some existing 2R1T overconstrained PMs with actuation redundancy, the main advantage of the proposed PM is that the heavy motors of two limbs are mounted on the base to reduce the movable mass and improve dynamic response. First, mobility analysis, inverse kinematics, and velocity analysis are presented. Then, the local transmission index and good transmission workspace are used to evaluate the motion/force transmissibility of the Hex4 PM. The variation tendencies of the two indices with different link parameters are investigated. The singularity is then discussed by considering the motion/force transmissibility. Finally, link parameters are optimized to obtain an improved good transmission workspace. It is shown that the proposed PM has a good potential for high precision applications.