To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Do you want to deepen your understanding of complex systems and design integrated circuits more quickly? Learn how with this step-by-step guide that shows, from first principles, how to employ estimation techniques to analyze and solve complex problems in IC design using a simplified modeling approach. Applications are richly illustrated using real-world examples from across IC design, from simple circuit theory, to the electromagnetic effects and high frequency design, and systems such as data converters and phase-locked loops. Basic concepts like inductance and capacitance are related to one other and other RF phenomena inside a modern chip, enhancing understanding without the need for simulators. Use the easy-to-follow models presented to start designing your own products, from inductors and amplifiers to more complex systems. Whether you are an early-career professional or researcher, graduate student, or established IC engineer looking to reduce your reliance on commercial software packages, this is essential reading.
An extensive and easy-to-read guide covering the fundamental concepts of electrical machines, highlighting transformers, motors, generators and magnetic circuits. It provides in-depth discussion on construction, working principles and applications of various electrical machines. The design of transformers, functioning of generators and performance of induction motors are explained through descriptive illustrations, step-by-step solved examples and mathematical derivations. A separate chapter on special purpose machines offers important topics such as servomotors, brushless motors and stepper motors, which is useful from industrial perspective to build a customized machine. Supported by 400 solved examples, 600 figures, and more than 1000 self-assessment exercises, this is an ideal text for one or two-semester undergraduate courses on electrical machines under electrical and electronics engineering.