To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Master the usage of s-parameters in signal integrity applications and gain full understanding of your simulation and measurement environment with this rigorous and practical guide. Solve specific signal integrity problems including calculation of the s-parameters of a network, linear simulation of circuits, de-embedding, and virtual probing, all with expert guidance. Learn about the interconnectedness of s-parameters, frequency responses, filters, and waveforms. This invaluable resource for signal integrity engineers is supplemented with the open-source software SignalIntegrity, a Python package for scripting solutions to signal integrity problems.
Discover the techniques of analog filter designs and their utilization in a large number of practical applications such as audio/video signal processing, biomedical instrumentation and antialiasing/reconstruction filters. Covering high frequency filter design like active R and active C filters, the author tries to present the subject in a simpler way as a base material for analog filter designs, as well as for advanced study of continuous-time filter designs, and allied filter design areas of current-mode (CM) and switched capacitor filters. With updated basic analog filter design approaches, the book will provide a better choice to select appropriate design technique for a specific application. Focussing mainly on continuous time domain techniques, which forms the base of all other techniques, this is an essential reading for undergraduate students. Numerous solved examples, practical applications and case studies on audio/video devices, medical instrumentation, control and antialiasing/reconstruction filters will provide ample motivation to readers.
Semiconducting nanostructures such as nanowires (NWs) have been used as building blocks for various types of sensors, energy storage and generation devices, electronic devices and for new manufacturing methods involving printed NWs. The response of these sensing/energy/electronic components and the new fabrication methods depends very much on the quality of NWs and for this reason it is important to understand the growth mechanism of 1D semiconducting nanostructures. This is also important to understand the compatibility of NW growth steps and tools used in the process with these unconventional substrates such as plastic that are used in flexible and large area electronics. Therefore, this Element presents at length discussion about the growth mechanisms, growth conditions and the tools used for the synthesis of NWs. Although NWs from Si, ZnO and carbon nanotubes (CNTs) are included, the discussion is generic and relevant to several other types of NWs as well as heterostructures.
This book explains clearly the operating principles of 'real world' electronic devices, including video recorders, compact disk players, and mobile phones. Each chapter begins with a brief historical overview of the device concerned. The author then describes the key principles of each device's operation and presents a block circuit diagram. Next he analyzes these 'real world' circuits in detail, and, finally, he discusses the present state-of-the-art. This approach will help to integrate the many different aspects of an electrical engineer's course work, from physical optics to digital signal processing, as never before. Very accessible and containing over 350 illustrations and many exercises, this book will be an ideal textbook for undergraduate students of electrical engineering, and will also appeal to practising engineers.
The observations from theis applied specifically to integrated circuit situations, where transmission line effects, inductors, capacitors and S-parameters are discussed using the estimation analysis method. Many useful formulae are derived that are used to design real world inductors and estimated parasitic capacitances. Also a brief overview of the connection between the printed circuit board and on-die applications is presented as well as a summary of the current state of detailed modeling of interconnect effects. The theoretical underpinnings behind common shielding techniques is discussed using the estimation analysis in the last part of the chapter. It is followed by design examples and exercises.
In this chapter Maxwell’s equations are described and common ways to solve them analytically are discussed. The equations imply certain properties of matter with which it interacts and full solutions that describes this behavior analytically are provided from first principles. The chapter shows specifically that one can derive very fundamental properties with simple calculations. Furthermore, the concept of inductance and capacitance are highlighted by reference to their duality. Various high-speed phenomena are studied in some detail with particular attention to the current distributions induced by the magnetic field.