To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The estimation analysis method is described in the context of sophisticated amplifiers. The purpose is to convince the reader of the usefulness of the technique by whetting their appetite with more complex systems. We start with a simple five transistor circuit and move on to comparators and cascaded amplifiers. All these are studied by applying simplifying assumptions followed by analytical solutions. Noise analysis and appropriate scaling techniques are also described in detail. The chapter further contains design examples and exercises to familiarize the reader more deeply with the methodology.
The estimation analysis method or more commonly referred to in everyday use as hand calcualtions is described here, where a systematic approach including a "feedback" loop to ensure correctness of model is used.
Basic amplifier stages are described in a somewhat cursory fashion. We use circuits that are familiar to most readers and present the analysis in a way that conforms to the estimation analysis described in Chapter 1. This way the reader will encounter familiar calculations in a different framework. The estimation analysis is also applied to nonlinear extensions of the common transfer function expressions. The chapter contains design examples and a set of exercises to ensure that the reader understands the basic concepts.
The lessons from the previous chapters are here applied to a very brief discussion of numerical techniques. First we show how to calculate the capacitance of three-dimensional structures; we then follow this with similar calculations of inductance. Both of these are well defined in the long wavelength approximation. We then describe how a full wave numerical solutions can be implemented using the popular method-of-moments. We follow this by discussing how to implement excitations or wave ports and how to implement boundary conditions between different dielectric layers.
This chapter describes how to apply estimation analysis to various systems. We start by discussing phase locked loops (PLL) and show how one can model them simply. One of the key properties of PLLs are their jitter performance. A definition of jitter is followed by a way to model the concept using simple noise sources. Next voltage controlled oscillators are described in some detail and various ways to model them using estimation analysis. This is followed by a design example of a VCO where the lessons from the previous chapters are incorporated including design examples. We then proceed to a discussion of analog-to-digital converters, which are described through some simple models. By incorporating design examples from the previous chapters a full straight flash ADC is implemented, where the ADC performance criteria are applied. This is another example of howthrough estimation analysis one can arrive at a good starting point for fine-tuning of a circuit using a simulator. Sampling methods, such as voltage sampling and charge sampling, are discussed following the estimation analysis method. The chapter concludes with exercises.
This accessible yet in-depth textbook describes the step-by-step processes involved in biomedical device design. Integrating microfabrication techniques, sensors and digital signal processing with key clinical applications, it covers: the measurement, amplification and digitization of physiological signals, and the removal of interfering signals; the transmission of signals from implanted sensors through the body, and the issues surrounding the powering of these sensors; networks for transferring sensitive patient data to hospitals for continuous home-monitoring systems; tests for ensuring patient safety; the cost-benefit and technological trade-offs involved in device design; and current challenges in biomedical device design. With dedicated chapters on electrocardiography, digital hearing aids and mobile health, and including numerous end-of-chapter homework problems, online solutions and additional references for extended learning, it is the ideal resource for senior undergraduate students taking courses in biomedical instrumentation and clinical technology.
Do you want to deepen your understanding of complex systems and design integrated circuits more quickly? Learn how with this step-by-step guide that shows, from first principles, how to employ estimation techniques to analyze and solve complex problems in IC design using a simplified modeling approach. Applications are richly illustrated using real-world examples from across IC design, from simple circuit theory, to the electromagnetic effects and high frequency design, and systems such as data converters and phase-locked loops. Basic concepts like inductance and capacitance are related to one other and other RF phenomena inside a modern chip, enhancing understanding without the need for simulators. Use the easy-to-follow models presented to start designing your own products, from inductors and amplifiers to more complex systems. Whether you are an early-career professional or researcher, graduate student, or established IC engineer looking to reduce your reliance on commercial software packages, this is essential reading.
An extensive and easy-to-read guide covering the fundamental concepts of electrical machines, highlighting transformers, motors, generators and magnetic circuits. It provides in-depth discussion on construction, working principles and applications of various electrical machines. The design of transformers, functioning of generators and performance of induction motors are explained through descriptive illustrations, step-by-step solved examples and mathematical derivations. A separate chapter on special purpose machines offers important topics such as servomotors, brushless motors and stepper motors, which is useful from industrial perspective to build a customized machine. Supported by 400 solved examples, 600 figures, and more than 1000 self-assessment exercises, this is an ideal text for one or two-semester undergraduate courses on electrical machines under electrical and electronics engineering.