To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A promising n-type thermoelectric oxide, based on the tungsten bronze-structured ferroelectric SrxBa1–xNb2O6–δ (SBN, x~0.61), was investigated to enhance the thermoelectric power factor through templated grain growth (textured polycrystalline). In the reduced SBN textured, both the electrical conductivity (σ) and the magnitude of thermopower (S) are increased in the c axis: σ33 > σ11 and |S33| > |S11|, and consequently, the thermoelectric power factor (PF) increased significantly due to crystal anisotropy and grain boundary density reduction. It was found in randomly oriented polycrystalline ceramics that the thermoelectric properties are dominated by a-axis properties. A ferroelectric–thermoelectric anomaly is observed at 4mm–4/mmm phase transition temperature (TC) and depends on temperature and reduction degree, consistent with our earlier observations in single crystal SBN. Above TC, the carrier transport mechanism is controlled by polaron hopping conduction, and below TC the behavior depends on the degree of reduction. However, the magnitude of the Seebeck coefficient is dependent on the crystal anisotropy.
A catalytic technique to enhance graphite formation in nongraphitizing carbons was adapted to work with three-dimensional wood-derived scaffolds. Unlike many synthetic graphite precursors, wood and other cellulosic carbons remain largely disordered after high temperature pyrolysis. Using a nickel nitrate liquid catalyst and controlled pyrolysis conditions, wood-derived scaffolds were produced showing similar graphitic content to traditional pitch-based graphite while retaining the high-aspect ratio pores of the precursor wood microstructure. Graphite formation was studied as a function of processing time and pyrolysis temperature, and the resulting carbons were analyzed using x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, and electron microscopy techniques.
We report on the electrochromic response of as-deposited and annealed nanostructured molybdenum trioxide films prepared with the glancing angle deposition (GLAD) technique. Morphology of the as-deposited films, obtained with an atomic force microscope (AFM), showed a typical grain size of 10 to 50 nm diameter. After annealing, the AFM images clearly showed the dominant presence of a layered structure, characteristic of the orthorhombic (α) phase of molybdenum trioxide, with typical grain dimensions of a few micrometers. The annealed samples showed pronounced coloration in the visible and near-infrared regions of the electromagnetic spectrum, while the as-deposited samples showed significant coloration only in the visible region.
Hafnium dioxide (HfO2) thin films were synthesized on silicon and quartz substrates by thermal oxidation of metallic hafnium films in oxygen. The crystalline structure and optical properties of the HfO2 films were systematically investigated using x-ray diffraction, ultraviolet (UV)-Raman, and UV-visible spectrophotometer techniques. All the films thermally oxidized at 450 to 800 °C were mostly monoclinic. Interestingly, cubic phase coexisted with monoclinic phase in the films thermally oxidized at 500 to 600 °C. The corresponding optical band gap (Eg) varied from 5.92 to 6.08 eV for the films with a different phase ratio (cubic to monoclinic one) ranging between 0 and 1:3. These results imply that the mixed phase could have a certain effect on the increase of the Eg of HfO2 films.
The poly (vinylidene difluoride) (PVDF) has been of great interest for energy conversion of microelectromechanical system devices. A semicrystalline polymer, the PVDF has five crystallographic forms, α, β, γ, δ, and ε. The latter four structures exhibit a permanent dipole moment. In this research, we investigated effects of microstructures of the PVDF on its piezoelectricity for energy harvesting. Using various experimental techniques, we observed the power density generated by a mechanical force that was correlated with the phase transformation between amorphous, α, β, and γ phases. The transformation was time-dependent in a nonlinear manner. Such transformation influences the energy transition and storage of small devices.
We report on the enhanced dielectric constant and electrical resistivity of the Co-ferrite (CoO.Fe2O3) by partially substituting Fe with La. Structural characteristics of La-doped Co ferrite namely CoO.Fe1.925La0.075O3 indicate the cubic inverse spinel phase with a small amount of LaFeO3 additional phase. The lattice parameter obtained is 8.401 Å (±0.001 Å), which is higher than that reported for Co ferrite (8.387 Å, ±0.001 Å). The dielectric constant and electrical resistivity of CoO.Fe1.925La0.075O3 are higher compared with pure Co ferrite. The dielectric constant dispersion of CoO.Fe1.925La0.075O3 in the frequency range of 100 Hz to 1 MHz fits to the modified Debye’s function with more than one ion contributing to the relaxation. Temperature-dependent electrical resistivity curves exhibit two distinct regions indicative of two different types of conduction mechanisms. Analysis of the data indicates that the small polaron and variable-range hopping mechanisms are operative in the 220 to 300 K and 160 to 220 K temperature regions, respectively.
Tin oxide (SnO2) nanotubes have been synthesized using carbon nanotubes (CNTs) as removable templates. The entire synthesis takes place on the microscale on a micromachined hotplate, without the use of photolithography, taking advantage of the device’s built-in heater. Well-aligned multiwalled CNT forests were grown directly on microhotplates at 600 °C using a bimetallic iron/alumina composite catalyst and acetylene as precursor. Thin films of anhydrous SnO2 were then deposited onto the CNT forests through chemical vapor deposition of tin nitrate at 375 °C. The CNTs were then removed through a simple anneal process in air at temperatures above 450 °C, resulting in SnO2 nanotubes. Gas sensing measurements indicated a substantial improvement in sensitivity to trace concentrations of methanol from the SnO2 nanotubes in comparison with a SnO2 thin film. The synthesis technique is generic and may be used to create any metal oxide nanotube structure directly on microscale substrates.
This work uses a method based on indentation to characterize a polydimethylsiloxane (PDMS) elastomer submerged in an organic solvent (decane, heptane, pentane, or cyclohexane). An indenter is pressed into a disk of a swollen elastomer to a fixed depth, and the force on the indenter is recorded as a function of time. By examining how the relaxation time scales with the radius of contact, one can differentiate the poroelastic behavior from the viscoelastic behavior. By matching the relaxation curve measured experimentally to that derived from the theory of poroelasticity, one can identify elastic constants and permeability. The measured elastic constants are interpreted within the Flory–Huggins theory. The measured permeability indicates that the solvent migrates in PDMS by diffusion, rather than by convection. This work confirms that indentation is a reliable and convenient method to characterize swollen elastomers.
The interplay of large strain and large strain rate during high-rate severe plastic deformation (HR-SPD) lead to dynamic temperature rise in situ that engenders a recovered microstructure whose characteristics are not just a function of the strain, but also of the strain rate and the coupled temperature rise during the deformation. In this work, we identify three classes of microstructures characterized by multistage recovery phenomena that take place during the high strain rate SPD of Cu. It is found that the first stage of this recovery is similar to the first stage of static recovery, which is characterized mainly by annihilation of dislocations. The second stage starts around 360 K and was characterized by dislocations getting arranged in tight cell boundaries and eventually into subgrain. Recovery stages were found to be followed by a stage of grain growth and recrystallization when the temperature in the deformation zone approaches 480 K.
Theoretically dense ZrB2–SiC two-phase microstructures were isothermally oxidized for ∼90 min in flowing air in the range 1500–1900 °C. Specimens with 30 mol% SiC formed distinctive reaction product layers that were highly protective; 28 mol% SiC–6 mol% TaB2 performed similarly. At and above 1700 °C, the composition with only 15 mol% SiC oxidized extensively because of deficient silicate liquid formation. Specimens with 60 mol% SiC were resistant to oxidation up to 1800 °C; at 1900 °C, this composition displayed periodic ruptures of the passivating layer by emerging gas bubbles. Oxide coating thicknesses calculated from weight loss data were consistent with those measured from scanning electron microscopy micrographs. A layer of ZrB2 devoid of SiC was argued to be from preferential removal of SiC by reaction of a silica oxidation product with adjacent unreacted SiC to form escaping gases.
Effects of stacking fault energy (SFE) on the thermal stability and mechanical properties of nanostructured (NS) Cu–Al alloys during thermal annealing were investigated in this study. Compared with NS Cu–5at.%Al alloy with the higher SFE, NS Cu–8at.%Al alloy exhibits the lower critical temperatures for the initiation of recrystallization and the transition from recovery-dominated to recrystallization-dominated process, which significantly signals its low thermal stability. This may be attributed to the large microstructural heterogeneities resulting from severe plastic deformation. With increasing the annealing temperatures, both Cu–Al alloys present the similar trend of decreased strength and improved ductility. Meanwhile, the remarkable enhancement of uniform elongation is achieved when the volume fraction of Static recrystallization (SRX) grains exceeds ~80%. Moreover, the better strength–ductility combination was achieved in the Cu–8at.%Al alloy with lower SFE.
Challenging the cherished notions of colloidal theory, Barry Ninham and Pierandrea Lo Nostro confront the scientific lore of molecular forces and colloidal science in an incisive and thought-provoking manner. The authors explain the development of these classical theories, discussing amongst other topics electrostatic forces in electrolytes, specific ion effects and hydrophobic interactions. Throughout the book they question assumptions, unearth flaws and present new results and ideas. From such analysis, a qualitative and predictive framework for the field emerges; the impact of this is discussed in the latter half of the book through force behaviour in self assembly. Here, numerous diverse phenomena are explained, from surfactants to biological applications, all richly illustrated with pertinent, intellectually stimulating examples. With mathematics kept to a minimum, and historic facts and anecdotes woven through the text, this is a highly engaging and readable treatment for students and researchers in science and engineering.
Silicon dioxide based Electrochemical Metallization (ECM) cells were intensively studied as a promising candidate for CMOS compatible non-volatile memory devices. The resistance of ECM cells can be switched between a high resistive (OFF) state and a low resistive (ON) state by applying a sufficient voltage or current pulse. This resistance transition is attributed to the formation and rupture of a few nanometers in diameter metallic filament. However, the metal ion transport which is believed to be responsible for the filamentary switching mechanism is not understood in detail. In case of SiO2 we suppose protons or humidity may enhance the metal ion transport.
In this work we report our studies on the proton incorporation in amorphous SiO2 thin films focused on the impact of hydrogen and humidity on the resistive switching effect. The switching behavior was analyzed by current-voltage measurements performed at different ambient conditions. The incorporation of hydrogen has been confirmed by Time-of-Flight Secondary-Ion-Mass-Spectroscopy (ToF-SIMS). The results led to an expansion of the defect model proposed in the literature.
The dependence of Li mobility on structure and composition of quenched Li0.5-xNax La0.5TiO3 (0 ≤ x < 0.5) and slowly cooled Li0.2-xNaxLa0.6TiO3 (0 ≤ x < 0.2) perovskite series, has been investigated by means of Neutron Diffraction (ND), Nuclear Magnetic Resonance (NMR) and Impedance Spectroscopy (IS). The first series displays rhombohedral (√2ap, √2ap, 2√3ap; S.G. R-3c) symmetry and vacancies are randomly distributed on A-sites (disordered phases), while Li0.2-xNaxLa0.6TiO3 series, presents orthorhombic unit cells (2ap, 2ap, 2ap; S.G. Cmmm) and the vacancies are preferentially located in alternating layers along the c-axis (ordered phases). In both cases, Li ions are shifted from A sites to a fourfold coordination at unit cell faces of the single cubic perovskite and octahedral are tilted along the rombohedral axis in Li-rich and along b-axis in Li- poor series. By heating the elimination of the octahedral tilting takes place changing the symmetry from rhombohedral to cubic in Li-rich samples, and from orthorhombic to tetragonal in Li-poor samples; however no changes were detected in La-vacancy distributions. For a particular value of sodium content (x=0.3 for Li0.5-xNaxLa0.5TiO3 and x=0.17 for Li0.2-xNaxLa0.6TiO3), the conductivity drops several orders of magnitude indicating that the amount of vacancies approaches the percolation threshold. In the temperature range 77-500 K, conductivity of Na-doped samples displays departures from the Arrhenius behavior, decreasing activation energy from 0.37 to 0.25 eV in disordered samples and from 0.37 to 0.12 eV in ordered ones. The structural sites occupancy has been investigated by ND, while Li mobility was evaluated through NMR and Impedance spectroscopy. The temperature dependence of thermal BLi factors has been related to the increment of conductivity that precede structural transformations, suggesting that Li motion trigger detected transitions in both series.
We report an interesting property of carbon dots: they emit light under charge injection. We synthesized carbon dots in diameter about 20 nm using wet chemistry methods. The photoluminescence quantum efficiency of the carbon dots dissolved in water was about 11%. We observed strong electrogenerated chemiluminescence (ECL) from the sample. This observation of ECL from carbon dots indicates that they could be a good candidate material for carbon-based electroluminescent devices.
The large intrinsic band gap in TiO2 has hindered severely its potential application for visible-light irradiation. We have used a passivated approach to modify the band edges of anatase-TiO2 by codoping of X (N, C) with transition metals (TM=W, Re, Os) to extend the absorption edge to longer visible-light wavelengths. It was found that all the codoped systems can narrow the band gap significantly; in particular, (N+W)-codoped systems could serve as remarkably better photocatalysts with both narrowing of the band gap and relatively smaller formation energies and larger binding energies than those of (C+TM) and (N+TM)-codoped systems. Our theoretical calculations help to rationalise experimental results and provide reasonably meaningful guides for experiment to develop more powerful visible-light photocatalysts.
Microstructural characterization (Focused Ion Beam and Transmission Electron Microscopy imaging) was performed on cross-sections of contacts in thick Electro Chemical Deposition copper metallization of System In Package Integrated Circuits. It was shown that the lower growth rate of ECD-Cu in the AlSiCu – barrier Ti – PVD-Cu – ECD-Cu layer stacking is related to a local higher resistivity induced by the presence of a great number of almost planar grain boundaries in the PVD-Cu layer, which are perpendicular to the growth axis. This morphology is a consequence of the almost heteroepitaxial growth of Ti layer on AlSiCu layer.