To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The effect of fluorine termination on the stability and bonding structure of diamond (111) surfaces were studied using first-principles calculations and compared with hydrogen termination by creating mixed F- and H-containing diamond surfaces. Surface F atoms, similar to H, formed sp3-type bonding with C atoms, which resulted in a more stable 1 × 1 configuration. The surface phase diagram built showed that the F-terminated surface was more stable in a larger-phase space than H termination, because of the formation of strong ionic C–F bonds and the development of attractive forces between F atoms, resulting in close packing of large F atoms. Hence, the F-terminated diamond surface was more chemically inert. A large repulsive force was required to bring two F-terminated surfaces together, because of the negative charge on F atoms, resulting in reduced adhesion tendency between two F-terminated diamond surfaces compared with H-terminated surfaces.
The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.
The influences of (SiN)+ and Eu2+ concentration on the optical properties of BaAl2−xSixO4−xNx:Eu2+ were investigated. The lifetime results show that there are two different cation sites occupied by Eu2+ ions and the energy transfer occurs between them. The Huang–Rhys factor and the Stokes energy shift were determined, and thermal quenching with increasing temperature was observed. Finally, intense yellowish-green light emitting diodes (LED) with the color coordinate of (0.2936, 0.4483) under a forward-bias current of 20 mA was successfully fabricated on the basis of a structure consisting of BaAl2−xSixO4−xNx:Eu2+ phosphor and near-ultraviolet (∼395 nm) GaN chip.
Nanometric-sized nitrogen-doped titanium oxide (TiO2-xNy) powders were synthesized by the two-microemulsion technology. The dried precursor precipitate was characterized by differential thermal analysis/thermogravimetric analysis, Raman spectroscopy, transmission electron microscopy, Brunauer-Emmet-Teller, and x-ray photoelectron spectrometer (XPS), and the mechanisms for the evolution of TiO2-xNy powders in this process were proposed and discussed in the context of the microstructure. It shows that a higher pH value solution results in obtaining a small size and much more homogeneous TiO2-xNy powder after calcinations. The powder prepared from a solution of pH 10–11 and calcined at 500 °C has a particle size of ∼4–6 nm with a specific surface area of 160 m2/g and exhibits a pure phase of anatase containing ∼5 mol% of N evidenced by XPS. However, the nanometric-sized TiO2-xNy powder shows the photocatalytic degradation of methylene blue solution effectively by exposing the powders in aqueous solution under visible light.
Two types of novel bicrystalline ZnO nanowires have been synthesized by a thermal evaporation method. The morphology and microstructure of the nanowires have been extensively investigated. One type of the nanowires has agg twin boundary extending down its entire length with twinning plane and the zone axis. The other type is those nanowires with twin crystal-single crystal junction. The twin defects in the Sn-Zn alloy droplets in the initial growth process are proposed for interpreting the growth of these two kinds of bicrystalline nanowires.
Bulk hybrid polymethyl methacrylate (PMMA)/SiO2 glass with Sb2S3 nanocrystals was prepared by the sol-gel process. We tried to minimize the quantity of water as much as possible in tetraethyl orthosilicate (TEOS) hydrolyzing, prepolymerized the organic monomers, mixed inorganic precursors, and prepolymerized organic monomers under a noncosolvent condition to reduce possible volume shrinkage. A silane coupling agent, which hydrolyzed simultaneously with TEOS, was introduced into the system to improve the miscibility of the organic and inorganic materials. The maximum dopant of Sb2S3 was 9 wt% in our experiments. The second-harmonic generation was observed in the hybrid PMMA/SiO2 glasses with electron-beam poling. Second-harmonic intensity increased with increase of accelerating voltage, current, and the content of Sb2S3 nanocrystals. The maximum χ2 in our study, as large as 1.64 p.m./V, was obtained under the optimized poling condition conducted at 25 kV, 20 nA, and 10 min. It was indicated from the thermally stimulated depolarization current measurements that the nonlinear layer was located in the thin 10-μm irradiated surface of the glass.
Various theoretical models have been proposed to describe material removal from a solid surface heated by laser irradiation. The thermal models of Afanas'ev and Krokhin (1967), Anisimov (1968), and Olstad and Olander (1975) represent early theoretical contributions to this problem. Chan and Mazumder (1987) developed a one-dimensional steady-state model describing the damage caused by vaporization and liquid expulsion due to laser–material interaction. Much of the above work was driven by laser applications such as cutting and drilling, and was thus focused primarily on modification of the target's morphology, with no particular interest in the detailed description of the properties and dynamics of the evaporated and ablated species. Moreover, these models dealt with continuous-wave (CW) laser sources, or relatively long (millisecond) time scales.
During the first stage of interaction between the laser pulse and the solid material, part of the laser energy is reflected at the surface and part of the energy is absorbed within a short penetration depth in the material. The energy absorbed is subsequently transferred deeper into the interior of the target by heat conduction. At a later stage, if the amount of laser energy is large enough (depending upon the pulse length, intensity profile, wavelength, and thermal and radiative properties of the target material), melting occurs and vaporization follows. The vapor generated can be ionized, creating high-density plasma that further absorbs the incident laser light. Effects of this laser-plasma shielding have been shown via the simplified one-dimensional model of Lunney and Jordan (1998).
Lasers that can produce coherent photon pulses with durations in the femtosecond regime have opened up new frontiers in materials research with extremely short temporal resolution and high photon intensity. The ultrafast nature of femtosecond lasers has been used to observe, in real time, phenomena including chemical reactions in gases (Zewail, 1994) and electron–lattice energy transfer in solids (Shah, 1996). On the other hand, ultra-short laser pulses impart extremely high intensities and provide precise laser-ablation thresholds at substantially reduced laser energy densities. The increasing availability of intense femtosecond lasers has sparked a growing interest in high-precision materials processing. In contrast to material modification using nanosecond or longer laser pulses, for which standard modes of thermal processes dominate, there is no heat exchange between the pulse and the material during femtosecond-laser–material interactions. As a consequence, femtosecond laser pulses can induce nonthermal structural changes driven directly by electronic excitation and associated nonlinear processes, before the material lattice has equilibrated with the excited carriers. This fast mode of material modification can result in vanishing thermal stress and minimal collateral damage for processing practically any solid-state material. Additionally, damage produced by femtosecond laser pulses is far more regular from shot to shot. These breakdown characteristics make femtosecond lasers ideal tools for precision material processing.
Thorough knowledge of the short-pulse-laser interaction with the target material is essential for controlling the resulting modification of the target's topography.
Effective contamination control and development of an efficient cleaning technology are critical in the semiconductor-device manufacturing and data-storage industry (Mittal, 1988). Especially, sub-micrometer-contaminant removal is becoming more and more important as tighter microscale integration of devices is constantly being pursued in the industry. The most effective way to solve the contamination problem is to avoid contamination by adequate design of a manufacturing process based on careful analysis of the contamination sources. However, in many cases, the process itself is a source of contamination and the development of a cleaning tool may often be unavoidable. In fact, a large percentage of the fabrication cost is attributed to several elaborate cleaning steps. Several conventional cleaning techniques are currently in wide industrial use. Nevertheless, laser cleaning (LC) is attractive because of the following advantages over the conventional cleaning techniques.
It is effective for sub-micrometer- to macroscopic-sized contaminants.
The cleaning process is environmentally sound, not involving bulk usage of toxic solvents.
The chance of causing mechanical damage to delicate parts is relatively small.
Selective cleaning of a part is possible through search-and-clean procedures.
Much research work has been done on LC schemes for a variety of substrates since the 1980s. A few notable examples of earlier work should be mentioned. Zapka et al. (1989) demonstrated LC applied to the cleaning of electron-beam-lithography masks (delicate Si membranes of thickness just 3 μm with transmission apertures of dimensions about 1 μm); such structures are too vulnerable to damage or contamination if cleaned by conventional megasonic techniques, scrubbing/wiping, high-pressure jets or other means but were found to be effectively cleanable simply by irradiation with a few ultraviolet (UV) laser pulses at a wavelength of 248 nm and energy fluence typically lower than 0.3 J/cm2.
Fundamental understanding of microscale phenomena has been greatly facilitated in recent years, largely due to the development of high-resolution mechanical, electrical, optical, and thermal sensors. Consequently, new directions have been created for the development of new materials that can be engineered to exhibit unusual properties at sub-micrometer scales. Surface engineering is a critical sub-field of nanotechnology because of the paramount importance of surface-interaction phenomena at the micro/nano-machine level. Nanofabrication of complex three-dimensional patterns cannot be accomplished with conventional thermo-chemo-mechanical processes. While laser-assisted processes have been effective in component microfabrication with basic dimensions in the few-micrometer range, there is an increasing need to advance the science and technology of laser processing to the nanoscale. Breakthroughs in various nanotechnologies, such as information storage, optoelectronics, and bio-fluidics, can be achieved only through basic research on nanoscale modification and characterization of surfaces designed to exhibit special topographical and compositional features at high densities.
Since their invention in the 1980s, scanning-microscopy techniques such as scanning tunneling microscopy (STM), atomic-force microscopy (AFM), scanning near-field optical microscopy, and further variants thereof, have not only become indispensable tools for ultrahigh-resolution imaging of surfaces and measurement of surface properties but also offered hitherto unexplored possibilities to locally modify materials at levels comparable to those of large atoms, single molecules, and atomic clusters. These nanometric investigation tools have been used extensively in numerous high-resolution nanostructuring studies, to manipulate single atoms, and also as effective all-inclusive nanofabrication tools.
Lasers are effective material-processing tools that offer distinct advantages, including choice of wavelength and pulse width to match the target material properties as well as one-step direct and locally confined structural modification. Understanding the evolution of the energy coupling with the target and the induced phase-change transformations is critical for improving the quality of micromachining and microprocessing. As current technology is pushed to ever smaller dimensions, lasers become a truly enabling solution, reducing thermomechanical damage and facilitating heterogeneous integration of components into functional devices. This is especially important in cases where conventional thermo-chemo-mechanical treatment processes are ineffective. Component microfabrication with basic dimensions in the few-microns range via laser irradiation has been implemented successfully in the industrial environment. Beyond this, there is an increasing need to advance the science and technology of laser processing to the nanoscale regime.
The book focuses on examining the transport mechanisms involved in the laser–material interactions in the context of microfabrication. The material was developed in the graduate course on Laser Processing and Diagnostics I introduced and taught in Berkeley over the years. The text aims at providing scientists, engineers, and graduate students with a comprehensive review of progress and the state of the art in the field by linking fundamental phenomena with modern applications.
Samuel S. Mao of the Lawrence Berkeley National Laboratory and the Mechanical Engineering Department of UC Berkeley contributed major parts of Chapters 5, 6, and 9. I wish to acknowledge the contributions of all my former and current students throughout this text.
Rapid vaporization of liquids on a pulsed-laser-heated surface
Background
The laser-beam interaction with materials in liquid environments exhibits unique characteristics in a variety of technical applications. The explosive vaporization of liquids induced by short-pulsed laser irradiation is utilized in laser cleaning to remove micro-contaminants (Park et al., 1994) and in medical laser surgery. Physical understanding of superheated liquids and liquid-to-vapor phase transitions has been sought in order to achieve better control of such applications. The transient development of the bubble-nucleation process and the onset of phase change were monitored by simultaneous application of optical-reflectance and -scattering probes (Yavas et al., 1993). The numerical heat-conduction calculation also shows that the solid surface achieves temperatures of tens of degrees of superheat (Yavas et al., 1994). Real-time measurement of the surface temperature transient in the course of the laser-induced vaporization process is needed, since the surface temperature is an important parameter in heterogeneous nucleation. The kinetics of heterogeneous bubble nucleation and the growth dynamics have long been a subject of intense research interest (Skripov, 1974; Stralen and Cole, 1979; Carey, 1992).
Enhanced pressure is produced in the interaction of short-pulsed laser light with liquids (Sigrist and Kneubühl, 1978). The efficient coupling of laser light into pressure is of interest in many technical and medical areas, such as laser cleaning to remove surface contaminants, laser tissue ablation, corneal sculpturing (Vogel et al., 1990), and gall-stone fragmentation (Teng et al., 1987).
Lasers (the acronym from light amplification by stimulated emission of radiation), with their unique coherent, monochromatic, and collimated beam characteristics, are used in ever-expanding fields of applications. Different applications require laser beams of different pulse duration and output power. Lasers employed for materials processing range from those with a high peak power and extremely short pulse duration to lasers with high-energy continuous-wave output.
Continuous-wave (CW) and long-pulsed lasers are typically used to process materials either at a fixed spot (penetration material removal) or in a scanning mode whereby either the beam or the target is translated. Millisecond- and microsecond-duration pulses are produced by chopping the CW laser beam or by applying an external modulated control voltage. Fixed Q-switched solid-state lasers with pulse durations from tens of microseconds to several milliseconds are often used in industrial welding and drilling applications. Continuous-wave carbon dioxide lasers (wavelength λ = 10.6μm and power in the kilowatt range) are widely employed for the cutting of bulk and thick samples of ceramics such as SiN, SiC, and metal-matrix ceramics (e.g. Duley, 1983). Continuous-wave laser radiation allows definition of grooves and cuts. On the other hand, low-power CO2 lasers in the 10–150-W range are used for marking of wood, plastics, and glasses. Argon-ion lasers operating in the visible range (λ = 419–514 nm) are utilized for trimming of thick and thin resistors. In the biomedical field various CW lasers have been used.